计算机科学
水准点(测量)
工作流程
基质(化学分析)
偶联反应
渲染(计算机图形)
数学优化
生化工程
组合化学
人工智能
化学
数学
数据库
催化作用
有机化学
工程类
色谱法
地理
大地测量学
作者
Nicholas H. Angello,Vandana Rathore,Wiktor Beker,Agnieszka Wołos,Edward R. Jira,Rafał Roszak,Tony Wu,Charles M. Schroeder,Alán Aspuru‐Guzik,Bartosz A. Grzybowski,Martin D. Burke
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2022-10-28
卷期号:378 (6618): 399-405
被引量:64
标识
DOI:10.1126/science.adc8743
摘要
General conditions for organic reactions are important but rare, and efforts to identify them usually consider only narrow regions of chemical space. Discovering more general reaction conditions requires considering vast regions of chemical space derived from a large matrix of substrates crossed with a high-dimensional matrix of reaction conditions, rendering exhaustive experimentation impractical. Here, we report a simple closed-loop workflow that leverages data-guided matrix down-selection, uncertainty-minimizing machine learning, and robotic experimentation to discover general reaction conditions. Application to the challenging and consequential problem of heteroaryl Suzuki-Miyaura cross-coupling identified conditions that double the average yield relative to a widely used benchmark that was previously developed using traditional approaches. This study provides a practical road map for solving multidimensional chemical optimization problems with large search spaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI