清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

HMA‐Net: A deep U‐shaped network combined with HarDNet and multi‐attention mechanism for medical image segmentation

人工智能 分割 计算机科学 背景(考古学) 计算机视觉 图像分割 模式识别(心理学) 特征(语言学) 编码器 医学影像学 深度学习 语言学 生物 操作系统 哲学 古生物学
作者
Qiaohong Liu,Ziqi Han,Ziling Liu,Juan Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (3): 1635-1646 被引量:1
标识
DOI:10.1002/mp.16065
摘要

Abstract Background Automatic segmentation of lesion, organ, and tissue from the medical image is an important part of medical image analysis, which are useful for improving the accuracy of disease diagnosis and clinical analysis. For skin melanomas lesions, the contrast ratio between lesions and surrounding skin is low and there are many irregular shapes, uneven distribution, and local and boundary features. Moreover, some hair covering the lesions destroys the local context. Polyp characteristics such as shape, size, and appearance vary at different development stages. Early polyps with small sizes have no distinctive features and could be easily mistaken for other intestinal structures, such as wrinkles and folds. Imaging positions and illumination conditions would alter polyps’ appearance and lead to no visible transitions between polyps and surrounding tissue. It remains a challenging task to accurately segment the skin lesions and polyps due to the high variability in the location, shape, size, color, and texture of the target object. Developing a robust and accurate segmentation method for medical images is necessary. Purpose To achieve better segmentation performance while dealing with the difficulties above, a U‐shape network based on the encoder and decoder structure is proposed to enhance the segmentation performance in target regions. Methods In this paper, a novel deep network of the encoder‐decoder model that combines HarDNet, dual attention (DA), and reverse attention (RA) is proposed. First, HarDNet68 is employed to extract the backbone features while improving the inference speed and computational efficiency. Second, the DA block is adopted to capture the global feature dependency in spatial and channel dimensions, and enrich the contextual information on local features. At last, three RA blocks are exploited to fuse and refine the boundary features to obtain the final segmentation results. Results Extensive experiments are conducted on a skin lesion dataset which consists of ISIC2016, ISIC2017, and ISIC 2018, and a polyp dataset which consists of several public datasets, that is, Kvasir, CVC‐ClinicDB, CVC‐ColonDB, ETIS, Endosece. The proposed method outperforms some state‐of‐art segmentation models on the ISIC2018, ISIC2017, and ISIC2016 datasets, with Jaccard's indexes of 0.846, 0.881, and 0.894, mean Dice coefficients of 0.907, 0.929, and 03939, precisions of 0.908, 0.977, and 0.968, and accuracies of 0.953, 0.975, and 0.972. Additionally, the proposed method also performs better than some state‐of‐art segmentation models on the Kvasir, CVC‐ClinicDB, CVC‐ColonDB, ETIS, and Endosece datasets, with mean Dice coefficients of 0.907, 0.935, 0.716, 0.667, and 0.887, mean intersection over union coefficients of 0.850, 0.885, 0.644, 0.595, and 0.821, structural similarity measures of 0.918, 0.953, 0.823, 0.807, and 0.933, enhanced alignment measures of 0.952, 0.983, 0.850, 0.817, and 0.957, mean absolute errors of 0.026, 0.007, 0.037, 0.030, and 0.009. Conclusions The proposed deep network could improve lesion segmentation performance in polyp and skin lesion images. The quantitative and qualitative results show that the proposed method can effectively handle the challenging task of segmentation while revealing the great potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
11秒前
19秒前
21秒前
牛牛牛刘完成签到,获得积分10
21秒前
牛牛牛刘发布了新的文献求助10
25秒前
小波波发布了新的文献求助10
29秒前
cadcae完成签到,获得积分10
49秒前
方白秋完成签到,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
下文献的蜉蝣完成签到 ,获得积分10
1分钟前
水兰色完成签到 ,获得积分10
1分钟前
烟消云散发布了新的文献求助30
1分钟前
英姑应助ltt采纳,获得10
1分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
顾矜应助11采纳,获得10
2分钟前
CodeCraft应助孟繁荣采纳,获得10
2分钟前
3分钟前
孟繁荣发布了新的文献求助10
3分钟前
3分钟前
3分钟前
wwe完成签到,获得积分10
3分钟前
华仔应助孟繁荣采纳,获得10
3分钟前
科研通AI5应助Shirley采纳,获得30
3分钟前
科研通AI2S应助火星上含芙采纳,获得10
3分钟前
3分钟前
孟繁荣发布了新的文献求助10
3分钟前
万能图书馆应助孟繁荣采纳,获得10
4分钟前
4分钟前
xdlongchem完成签到,获得积分10
4分钟前
ltt发布了新的文献求助10
4分钟前
孟繁荣完成签到,获得积分10
4分钟前
4分钟前
4分钟前
ltt完成签到,获得积分10
4分钟前
11发布了新的文献求助10
4分钟前
4分钟前
123468789521发布了新的文献求助10
4分钟前
zyh完成签到 ,获得积分10
4分钟前
高分求助中
The Foraging Behavior of the Honey Bee (Apis mellifera, L.) 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681705
求助须知:如何正确求助?哪些是违规求助? 3233556
关于积分的说明 9809078
捐赠科研通 2945033
什么是DOI,文献DOI怎么找? 1615084
邀请新用户注册赠送积分活动 762505
科研通“疑难数据库(出版商)”最低求助积分说明 737467