HMA‐Net: A deep U‐shaped network combined with HarDNet and multi‐attention mechanism for medical image segmentation

人工智能 分割 计算机科学 背景(考古学) 计算机视觉 图像分割 模式识别(心理学) 特征(语言学) 编码器 医学影像学 深度学习 语言学 生物 操作系统 哲学 古生物学
作者
Qiaohong Liu,Ziqi Han,Ziling Liu,Juan Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (3): 1635-1646 被引量:1
标识
DOI:10.1002/mp.16065
摘要

Abstract Background Automatic segmentation of lesion, organ, and tissue from the medical image is an important part of medical image analysis, which are useful for improving the accuracy of disease diagnosis and clinical analysis. For skin melanomas lesions, the contrast ratio between lesions and surrounding skin is low and there are many irregular shapes, uneven distribution, and local and boundary features. Moreover, some hair covering the lesions destroys the local context. Polyp characteristics such as shape, size, and appearance vary at different development stages. Early polyps with small sizes have no distinctive features and could be easily mistaken for other intestinal structures, such as wrinkles and folds. Imaging positions and illumination conditions would alter polyps’ appearance and lead to no visible transitions between polyps and surrounding tissue. It remains a challenging task to accurately segment the skin lesions and polyps due to the high variability in the location, shape, size, color, and texture of the target object. Developing a robust and accurate segmentation method for medical images is necessary. Purpose To achieve better segmentation performance while dealing with the difficulties above, a U‐shape network based on the encoder and decoder structure is proposed to enhance the segmentation performance in target regions. Methods In this paper, a novel deep network of the encoder‐decoder model that combines HarDNet, dual attention (DA), and reverse attention (RA) is proposed. First, HarDNet68 is employed to extract the backbone features while improving the inference speed and computational efficiency. Second, the DA block is adopted to capture the global feature dependency in spatial and channel dimensions, and enrich the contextual information on local features. At last, three RA blocks are exploited to fuse and refine the boundary features to obtain the final segmentation results. Results Extensive experiments are conducted on a skin lesion dataset which consists of ISIC2016, ISIC2017, and ISIC 2018, and a polyp dataset which consists of several public datasets, that is, Kvasir, CVC‐ClinicDB, CVC‐ColonDB, ETIS, Endosece. The proposed method outperforms some state‐of‐art segmentation models on the ISIC2018, ISIC2017, and ISIC2016 datasets, with Jaccard's indexes of 0.846, 0.881, and 0.894, mean Dice coefficients of 0.907, 0.929, and 03939, precisions of 0.908, 0.977, and 0.968, and accuracies of 0.953, 0.975, and 0.972. Additionally, the proposed method also performs better than some state‐of‐art segmentation models on the Kvasir, CVC‐ClinicDB, CVC‐ColonDB, ETIS, and Endosece datasets, with mean Dice coefficients of 0.907, 0.935, 0.716, 0.667, and 0.887, mean intersection over union coefficients of 0.850, 0.885, 0.644, 0.595, and 0.821, structural similarity measures of 0.918, 0.953, 0.823, 0.807, and 0.933, enhanced alignment measures of 0.952, 0.983, 0.850, 0.817, and 0.957, mean absolute errors of 0.026, 0.007, 0.037, 0.030, and 0.009. Conclusions The proposed deep network could improve lesion segmentation performance in polyp and skin lesion images. The quantitative and qualitative results show that the proposed method can effectively handle the challenging task of segmentation while revealing the great potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木穹完成签到,获得积分10
2秒前
Akim应助顾北采纳,获得10
2秒前
2秒前
星辰大海应助陶醉冷亦采纳,获得10
3秒前
Orange应助李梦琦采纳,获得10
3秒前
天天快乐应助言十采纳,获得10
3秒前
3秒前
4秒前
李爱国应助sdahjjyk采纳,获得10
5秒前
5秒前
zhangmeimei发布了新的文献求助10
5秒前
微信研友发布了新的文献求助10
6秒前
科研小白完成签到,获得积分10
6秒前
搜集达人应助乐观的鸽子采纳,获得10
6秒前
乐乐应助lang采纳,获得10
7秒前
清脆难胜应助海亦采纳,获得10
8秒前
小于一发布了新的文献求助10
8秒前
10秒前
11秒前
12秒前
13秒前
cc完成签到,获得积分10
14秒前
lllzzz236发布了新的文献求助10
15秒前
言十发布了新的文献求助10
15秒前
15秒前
123完成签到 ,获得积分10
15秒前
17秒前
sdahjjyk发布了新的文献求助10
17秒前
Progie完成签到,获得积分10
18秒前
顾北发布了新的文献求助10
18秒前
19秒前
鱼鱼完成签到 ,获得积分10
20秒前
稳重的若雁举报三岁半求助涉嫌违规
20秒前
20秒前
不配.应助zhangmeimei采纳,获得10
21秒前
言十完成签到,获得积分10
22秒前
幸福果汁发布了新的文献求助10
23秒前
小刘要加油完成签到,获得积分10
23秒前
陶醉冷亦发布了新的文献求助10
23秒前
lang发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870