HMA‐Net: A deep U‐shaped network combined with HarDNet and multi‐attention mechanism for medical image segmentation

人工智能 分割 计算机科学 背景(考古学) 计算机视觉 图像分割 模式识别(心理学) 特征(语言学) 编码器 医学影像学 深度学习 语言学 生物 操作系统 哲学 古生物学
作者
Qiaohong Liu,Ziqi Han,Ziling Liu,Juan Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (3): 1635-1646 被引量:6
标识
DOI:10.1002/mp.16065
摘要

Abstract Background Automatic segmentation of lesion, organ, and tissue from the medical image is an important part of medical image analysis, which are useful for improving the accuracy of disease diagnosis and clinical analysis. For skin melanomas lesions, the contrast ratio between lesions and surrounding skin is low and there are many irregular shapes, uneven distribution, and local and boundary features. Moreover, some hair covering the lesions destroys the local context. Polyp characteristics such as shape, size, and appearance vary at different development stages. Early polyps with small sizes have no distinctive features and could be easily mistaken for other intestinal structures, such as wrinkles and folds. Imaging positions and illumination conditions would alter polyps’ appearance and lead to no visible transitions between polyps and surrounding tissue. It remains a challenging task to accurately segment the skin lesions and polyps due to the high variability in the location, shape, size, color, and texture of the target object. Developing a robust and accurate segmentation method for medical images is necessary. Purpose To achieve better segmentation performance while dealing with the difficulties above, a U‐shape network based on the encoder and decoder structure is proposed to enhance the segmentation performance in target regions. Methods In this paper, a novel deep network of the encoder‐decoder model that combines HarDNet, dual attention (DA), and reverse attention (RA) is proposed. First, HarDNet68 is employed to extract the backbone features while improving the inference speed and computational efficiency. Second, the DA block is adopted to capture the global feature dependency in spatial and channel dimensions, and enrich the contextual information on local features. At last, three RA blocks are exploited to fuse and refine the boundary features to obtain the final segmentation results. Results Extensive experiments are conducted on a skin lesion dataset which consists of ISIC2016, ISIC2017, and ISIC 2018, and a polyp dataset which consists of several public datasets, that is, Kvasir, CVC‐ClinicDB, CVC‐ColonDB, ETIS, Endosece. The proposed method outperforms some state‐of‐art segmentation models on the ISIC2018, ISIC2017, and ISIC2016 datasets, with Jaccard's indexes of 0.846, 0.881, and 0.894, mean Dice coefficients of 0.907, 0.929, and 03939, precisions of 0.908, 0.977, and 0.968, and accuracies of 0.953, 0.975, and 0.972. Additionally, the proposed method also performs better than some state‐of‐art segmentation models on the Kvasir, CVC‐ClinicDB, CVC‐ColonDB, ETIS, and Endosece datasets, with mean Dice coefficients of 0.907, 0.935, 0.716, 0.667, and 0.887, mean intersection over union coefficients of 0.850, 0.885, 0.644, 0.595, and 0.821, structural similarity measures of 0.918, 0.953, 0.823, 0.807, and 0.933, enhanced alignment measures of 0.952, 0.983, 0.850, 0.817, and 0.957, mean absolute errors of 0.026, 0.007, 0.037, 0.030, and 0.009. Conclusions The proposed deep network could improve lesion segmentation performance in polyp and skin lesion images. The quantitative and qualitative results show that the proposed method can effectively handle the challenging task of segmentation while revealing the great potential for clinical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mm555完成签到 ,获得积分10
1秒前
1秒前
lili发布了新的文献求助10
1秒前
2秒前
2秒前
阅遍SCI完成签到,获得积分10
3秒前
英勇的战斗机完成签到,获得积分10
3秒前
秋不苏完成签到 ,获得积分10
3秒前
卿卿完成签到,获得积分20
3秒前
3秒前
4秒前
wuxunxun2015发布了新的文献求助10
5秒前
乐观小蕊发布了新的文献求助10
6秒前
brookqu完成签到,获得积分10
6秒前
Wu发布了新的文献求助10
6秒前
7秒前
陈美宏发布了新的文献求助10
9秒前
LY发布了新的文献求助10
9秒前
枳实发布了新的文献求助10
9秒前
9秒前
11秒前
PORCO完成签到,获得积分10
12秒前
文静雨安完成签到,获得积分10
13秒前
14秒前
小二郎应助卿卿采纳,获得10
14秒前
kxy0311发布了新的文献求助10
14秒前
共享精神应助小黄的主人采纳,获得10
14秒前
15秒前
醉熏的老师完成签到,获得积分10
15秒前
笨笨的外套完成签到,获得积分10
16秒前
17秒前
简简单单完成签到,获得积分10
19秒前
领导范儿应助li采纳,获得10
19秒前
刘蕊发布了新的文献求助10
19秒前
okkkk完成签到,获得积分10
19秒前
muzi发布了新的文献求助10
20秒前
21秒前
好好学习完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598832
求助须知:如何正确求助?哪些是违规求助? 4684218
关于积分的说明 14834289
捐赠科研通 4664987
什么是DOI,文献DOI怎么找? 2537445
邀请新用户注册赠送积分活动 1504928
关于科研通互助平台的介绍 1470655