Value of multimodal MRI radiomics and machine learning in predicting staging liver fibrosis and grading inflammatory activity

无线电技术 接收机工作特性 随机森林 分级(工程) 医学 人工智能 试验装置 磁共振成像 纤维化 机器学习 放射科 模式识别(心理学) 计算机科学 病理 工程类 土木工程
作者
Huanhuan Wei,Zehua Shao,Fangfang Fu,Xuan Yu,Yaping Wu,Yan Bai,Wei Wei,Nan Meng,Kewei Liu,Hui Han,Meiyun Wang
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1141) 被引量:7
标识
DOI:10.1259/bjr.20220512
摘要

Objective: To evaluate the value of radiomics models created based on non-contrast enhanced T 1 weighted (T 1W) and T 2W fat-saturated (T 2WFS) images for staging hepatic fibrosis (HF) and grading inflammatory activity. Methods and materials: Data of 280 patients with pathologically confirmed HF and 48 healthy volunteers were included. The participants were divided into the training set and the test set at the proportion of 4:1 by the random seed method. We used the Pyradiomics software to extract radiomics features, and then use the least absolute shrinkage and selection operator to select the optimal subset. Finally, we used the stochastic gradient descent classifier to build the prediction models. DeLong test was used to compare the diagnostic performance of the models. Receiver operating characteristics was used to evaluate the prediction ability of the models. Results: The diagnostic efficiency of the models based on T 1W & T 2WFS images were the highest (all p < 0.05). When discriminating significant fibrosis (≥ F2), there were significant differences in the AUCs between the machine learning models based on T 1W and T 2WFS images (p < 0.05), but there were no significant differences in area under the receiver operating characteristic curves between the two models in other groups (all p > 0.05). Conclusion: The radiomics models built on T 1W and T 2WFS images are effective in assessing HF and inflammatory activity. Advances in knowledge: Based on conventional MR sequences that are readily available in the clinic, namely unenhanced T 1W and T 2W images. Radiomics can be used for diagnosis and differential diagnosis of liver fibrosis staging and inflammatory activity grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昂叔的头发丝儿完成签到,获得积分10
1秒前
科研顺利发布了新的文献求助10
1秒前
2秒前
lanlan发布了新的文献求助10
4秒前
高高菠萝完成签到 ,获得积分10
8秒前
活泼新儿发布了新的文献求助10
9秒前
眼泪成诗完成签到 ,获得积分10
11秒前
澈哩完成签到,获得积分10
11秒前
精明云朵完成签到 ,获得积分10
12秒前
domkps完成签到 ,获得积分10
16秒前
yoyocici1505完成签到,获得积分10
16秒前
yiqichihuoguoa完成签到 ,获得积分10
17秒前
青青完成签到 ,获得积分10
19秒前
传奇3应助lanlan采纳,获得10
20秒前
巧克力完成签到 ,获得积分10
21秒前
晓伟完成签到,获得积分10
22秒前
Hey完成签到 ,获得积分10
23秒前
Sicily完成签到,获得积分10
23秒前
追梦小帅完成签到,获得积分10
23秒前
小趴菜完成签到,获得积分10
24秒前
25秒前
26秒前
朴素的月光完成签到,获得积分10
28秒前
早发论文应助科研通管家采纳,获得10
28秒前
bkagyin应助科研通管家采纳,获得10
29秒前
ding应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
李建科完成签到,获得积分10
29秒前
星辰大海应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
Clover04应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
wwww0wwww应助科研通管家采纳,获得10
29秒前
酷酷菲音完成签到,获得积分10
29秒前
Singularity应助科研通管家采纳,获得10
29秒前
29秒前
29秒前
29秒前
江河湖海完成签到 ,获得积分10
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162539
求助须知:如何正确求助?哪些是违规求助? 2813402
关于积分的说明 7900247
捐赠科研通 2472973
什么是DOI,文献DOI怎么找? 1316615
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175