Value of multimodal MRI radiomics and machine learning in predicting staging liver fibrosis and grading inflammatory activity

无线电技术 接收机工作特性 随机森林 分级(工程) 医学 人工智能 试验装置 磁共振成像 纤维化 机器学习 放射科 模式识别(心理学) 计算机科学 病理 工程类 土木工程
作者
Huanhuan Wei,Zehua Shao,Fangfang Fu,Xuan Yu,Yaping Wu,Yan Bai,Wei Wei,Nan Meng,Kewei Liu,Hui Han,Meiyun Wang
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1141) 被引量:7
标识
DOI:10.1259/bjr.20220512
摘要

Objective: To evaluate the value of radiomics models created based on non-contrast enhanced T 1 weighted (T 1W) and T 2W fat-saturated (T 2WFS) images for staging hepatic fibrosis (HF) and grading inflammatory activity. Methods and materials: Data of 280 patients with pathologically confirmed HF and 48 healthy volunteers were included. The participants were divided into the training set and the test set at the proportion of 4:1 by the random seed method. We used the Pyradiomics software to extract radiomics features, and then use the least absolute shrinkage and selection operator to select the optimal subset. Finally, we used the stochastic gradient descent classifier to build the prediction models. DeLong test was used to compare the diagnostic performance of the models. Receiver operating characteristics was used to evaluate the prediction ability of the models. Results: The diagnostic efficiency of the models based on T 1W & T 2WFS images were the highest (all p < 0.05). When discriminating significant fibrosis (≥ F2), there were significant differences in the AUCs between the machine learning models based on T 1W and T 2WFS images (p < 0.05), but there were no significant differences in area under the receiver operating characteristic curves between the two models in other groups (all p > 0.05). Conclusion: The radiomics models built on T 1W and T 2WFS images are effective in assessing HF and inflammatory activity. Advances in knowledge: Based on conventional MR sequences that are readily available in the clinic, namely unenhanced T 1W and T 2W images. Radiomics can be used for diagnosis and differential diagnosis of liver fibrosis staging and inflammatory activity grading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁岁完成签到 ,获得积分10
1秒前
吴炫完成签到 ,获得积分10
2秒前
在水一方应助毅诚菌采纳,获得10
2秒前
衣兮完成签到,获得积分10
2秒前
宁静致远发布了新的文献求助10
3秒前
weilei完成签到,获得积分10
3秒前
sunset发布了新的文献求助10
4秒前
orixero应助安详的芷采纳,获得10
4秒前
5秒前
5秒前
7秒前
7秒前
7秒前
9秒前
科研通AI6应助jellyfish采纳,获得50
10秒前
共享精神应助高兴鸿煊采纳,获得10
10秒前
无私如花完成签到,获得积分10
10秒前
10秒前
Orange应助aa采纳,获得10
10秒前
巨星不吃辣完成签到,获得积分10
11秒前
11秒前
Li发布了新的文献求助10
12秒前
12秒前
zz发布了新的文献求助10
13秒前
14秒前
Ava应助sunshine采纳,获得10
14秒前
ArZn完成签到,获得积分10
14秒前
Allis发布了新的文献求助10
14秒前
多情凝蕊完成签到,获得积分20
14秒前
科研通AI6应助华哥采纳,获得10
15秒前
浮游应助XHL采纳,获得10
17秒前
彭彭发布了新的文献求助10
17秒前
18秒前
在水一方应助Julie采纳,获得10
19秒前
冷艳新波完成签到,获得积分10
19秒前
脑洞疼应助cm357558984采纳,获得10
19秒前
okiya完成签到,获得积分10
20秒前
稳重擎苍发布了新的文献求助10
21秒前
猴哥完成签到,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320977
求助须知:如何正确求助?哪些是违规求助? 4462749
关于积分的说明 13887609
捐赠科研通 4353801
什么是DOI,文献DOI怎么找? 2391340
邀请新用户注册赠送积分活动 1385010
关于科研通互助平台的介绍 1354802