Value of multimodal MRI radiomics and machine learning in predicting staging liver fibrosis and grading inflammatory activity

无线电技术 接收机工作特性 随机森林 分级(工程) 医学 人工智能 试验装置 磁共振成像 纤维化 机器学习 放射科 模式识别(心理学) 计算机科学 病理 工程类 土木工程
作者
Huanhuan Wei,Zehua Shao,Fangfang Fu,Xuan Yu,Yaping Wu,Yan Bai,Wei Wei,Nan Meng,Kewei Liu,Hui Han,Meiyun Wang
出处
期刊:British Journal of Radiology [British Institute of Radiology]
卷期号:96 (1141) 被引量:7
标识
DOI:10.1259/bjr.20220512
摘要

Objective: To evaluate the value of radiomics models created based on non-contrast enhanced T 1 weighted (T 1W) and T 2W fat-saturated (T 2WFS) images for staging hepatic fibrosis (HF) and grading inflammatory activity. Methods and materials: Data of 280 patients with pathologically confirmed HF and 48 healthy volunteers were included. The participants were divided into the training set and the test set at the proportion of 4:1 by the random seed method. We used the Pyradiomics software to extract radiomics features, and then use the least absolute shrinkage and selection operator to select the optimal subset. Finally, we used the stochastic gradient descent classifier to build the prediction models. DeLong test was used to compare the diagnostic performance of the models. Receiver operating characteristics was used to evaluate the prediction ability of the models. Results: The diagnostic efficiency of the models based on T 1W & T 2WFS images were the highest (all p < 0.05). When discriminating significant fibrosis (≥ F2), there were significant differences in the AUCs between the machine learning models based on T 1W and T 2WFS images (p < 0.05), but there were no significant differences in area under the receiver operating characteristic curves between the two models in other groups (all p > 0.05). Conclusion: The radiomics models built on T 1W and T 2WFS images are effective in assessing HF and inflammatory activity. Advances in knowledge: Based on conventional MR sequences that are readily available in the clinic, namely unenhanced T 1W and T 2W images. Radiomics can be used for diagnosis and differential diagnosis of liver fibrosis staging and inflammatory activity grading.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SuperYing发布了新的文献求助10
1秒前
烟花应助风中元瑶采纳,获得10
1秒前
1秒前
Hello应助李联洪采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
zz发布了新的文献求助10
2秒前
昏睡的蟠桃应助豆豆采纳,获得30
2秒前
哈哈哈哈哈完成签到,获得积分10
2秒前
2秒前
3秒前
852应助wsd采纳,获得10
4秒前
念心发布了新的文献求助10
4秒前
优雅盼海发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
Kkkkkk发布了新的文献求助10
7秒前
zishan发布了新的文献求助20
8秒前
lllyf发布了新的文献求助10
8秒前
侧耳倾听发布了新的文献求助10
8秒前
寒冷的寒梦完成签到,获得积分10
8秒前
蕾蕾完成签到,获得积分10
8秒前
zzmyyds发布了新的文献求助10
9秒前
9秒前
9秒前
asqw完成签到,获得积分10
10秒前
YMH发布了新的文献求助10
11秒前
zzer发布了新的文献求助10
11秒前
tang123完成签到,获得积分10
11秒前
3d54s2完成签到,获得积分10
11秒前
小青椒应助潇洒的依凝采纳,获得30
11秒前
李海翔完成签到,获得积分10
12秒前
14秒前
99giddens发布了新的文献求助100
14秒前
14秒前
烤肠应助闪闪的熠彤采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531988
求助须知:如何正确求助?哪些是违规求助? 4620728
关于积分的说明 14574699
捐赠科研通 4560496
什么是DOI,文献DOI怎么找? 2498874
邀请新用户注册赠送积分活动 1478787
关于科研通互助平台的介绍 1450096