作者
Jinchao Jia,Mengyan Wang,Jianfen Meng,Yuning Ma,Yan Wang,Naijun Miao,Jialin Teng,Dehao Zhu,Hui Shi,Yue Sun,Honglei Liu,Xiaobing Cheng,Yutong Su,Junna Ye,Huihui Chi,Tingting Liu,Zhuochao Zhou,Lei Wan,Xia Chen,Fan Wang,Hao Zhang,Jingjing Ben,Jing Wang,Chengde Yang,Qiongyi Hu
摘要
Abstract Hyperferritinemic syndrome, an overwhelming inflammatory condition, is characterized by high ferritin levels, systemic inflammation and multi-organ dysfunction, but the pathogenic role of ferritin remains largely unknown. Here we show in an animal model that ferritin administration leads to systemic and hepatic inflammation characterized by excessive neutrophil leukocyte infiltration and neutrophil extracellular trap (NET) formation in the liver tissue. Ferritin-induced NET formation depends on the expression of peptidylarginine deiminase 4 and neutrophil elastase and on reactive oxygen species production. Mechanistically, ferritin exposure increases both overall and cell surface expression of Msr1 on neutrophil leukocytes, and also acts as ligand to Msr1 to trigger the NET formation pathway. Depletion of neutrophil leukocytes or ablation of Msr1 protect mice from tissue damage and the hyperinflammatory response, which further confirms the role of Msr1 as ferritin receptor. The relevance of the animal model is underscored by the observation that enhanced NET formation, increased Msr1 expression and signalling on neutrophil leukocytes are also characteristic to adult-onset Still’s disease (AOSD), a typical hyperferritinemic syndrome. Collectively, our findings demonstrate an essential role of ferritin in NET-mediated cytokine storm, and suggest that targeting NETs or Msr1 may benefit AOSD patients.