Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward

基于生理学的药代动力学模型 运输机 计算生物学 药理学 药品 计算机科学 不可用 药代动力学 医学 数据科学 生物 工程类 生物化学 基因 可靠性工程
作者
Gautam Vijaywargi,Sivacharan Kollipara,Tausif Ahmed,Siddharth Chachad
出处
期刊:Biopharmaceutics & Drug Disposition [Wiley]
卷期号:44 (3): 195-220 被引量:10
标识
DOI:10.1002/bdd.2339
摘要

Abstract The greater utilization and acceptance of physiologically‐based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug–drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter‐mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme‐transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state‐of‐the‐art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer‐reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme‐transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助可靠雪雪采纳,获得10
1秒前
领导范儿应助嘻嘻采纳,获得10
2秒前
2秒前
麦芽糖完成签到,获得积分10
2秒前
orixero应助朴素的士晋采纳,获得10
2秒前
ybouo发布了新的文献求助10
2秒前
Eternity完成签到,获得积分10
3秒前
你的二踢脚完成签到,获得积分10
3秒前
topteng完成签到,获得积分20
4秒前
samurai完成签到,获得积分10
4秒前
三千年的成长完成签到,获得积分10
4秒前
5秒前
小叶完成签到,获得积分10
6秒前
Feng11完成签到,获得积分10
7秒前
7秒前
跳跃幻竹发布了新的文献求助10
7秒前
7秒前
小杭76应助KInn采纳,获得10
8秒前
Owen应助十八鱼采纳,获得10
9秒前
浮游应助lxjjj采纳,获得10
9秒前
10秒前
10秒前
秦可可发布了新的文献求助10
10秒前
10秒前
12秒前
iris发布了新的文献求助10
12秒前
824完成签到,获得积分10
13秒前
桐桐应助熊二采纳,获得10
14秒前
顾瑶发布了新的文献求助10
17秒前
i7发布了新的文献求助10
18秒前
HN洪发布了新的文献求助10
19秒前
popooo完成签到,获得积分10
19秒前
yundong完成签到,获得积分10
19秒前
刘智豪完成签到,获得积分10
20秒前
秦可可完成签到,获得积分20
20秒前
ch完成签到,获得积分10
20秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
上官若男应助科研通管家采纳,获得10
23秒前
zhounini1989应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得30
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262