已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward

基于生理学的药代动力学模型 运输机 计算生物学 药理学 药品 计算机科学 不可用 药代动力学 医学 数据科学 生物 工程类 生物化学 基因 可靠性工程
作者
Gautam Vijaywargi,Sivacharan Kollipara,Tausif Ahmed,Siddharth Chachad
出处
期刊:Biopharmaceutics & Drug Disposition [Wiley]
卷期号:44 (3): 195-220 被引量:10
标识
DOI:10.1002/bdd.2339
摘要

Abstract The greater utilization and acceptance of physiologically‐based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug–drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter‐mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme‐transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state‐of‐the‐art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer‐reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme‐transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanyu完成签到 ,获得积分10
刚刚
小蘑菇应助神海采纳,获得10
1秒前
1秒前
2秒前
斧王发布了新的文献求助10
2秒前
2秒前
酷波er应助辰叶采纳,获得10
4秒前
领导范儿应助326361887采纳,获得10
5秒前
保守派帮主完成签到,获得积分10
6秒前
清脆的书桃完成签到,获得积分10
6秒前
6秒前
7秒前
聪明萤完成签到 ,获得积分10
9秒前
10秒前
12秒前
骆十八发布了新的文献求助30
12秒前
韩佳怡给韩佳怡的求助进行了留言
12秒前
203971382完成签到,获得积分10
14秒前
故意不上钩的鱼应助Nangong采纳,获得10
15秒前
Cy-coolorgan发布了新的文献求助10
15秒前
17秒前
封某发布了新的文献求助30
17秒前
17秒前
斯文的丸子完成签到 ,获得积分10
17秒前
20秒前
21秒前
Xiaoming85完成签到,获得积分10
21秒前
小陈栗子发布了新的文献求助10
22秒前
徐逊发布了新的文献求助10
23秒前
羊水彤完成签到,获得积分10
24秒前
田様应助幸运幸福采纳,获得10
24秒前
ll完成签到,获得积分10
24秒前
半_发布了新的文献求助10
26秒前
Cy-coolorgan完成签到,获得积分10
27秒前
28秒前
栗子完成签到,获得积分10
29秒前
30秒前
英俊的铭应助pattrick采纳,获得10
30秒前
32秒前
在水一方应助secret采纳,获得30
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252704
求助须知:如何正确求助?哪些是违规求助? 4416333
关于积分的说明 13749452
捐赠科研通 4288358
什么是DOI,文献DOI怎么找? 2352895
邀请新用户注册赠送积分活动 1349738
关于科研通互助平台的介绍 1309271