Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward

基于生理学的药代动力学模型 运输机 计算生物学 药理学 药品 计算机科学 不可用 药代动力学 医学 数据科学 生物 工程类 生物化学 基因 可靠性工程
作者
Gautam Vijaywargi,Sivacharan Kollipara,Tausif Ahmed,Siddharth Chachad
出处
期刊:Biopharmaceutics & Drug Disposition [Wiley]
卷期号:44 (3): 195-220 被引量:8
标识
DOI:10.1002/bdd.2339
摘要

Abstract The greater utilization and acceptance of physiologically‐based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug–drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter‐mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme‐transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state‐of‐the‐art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer‐reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme‐transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一九九七发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
zhiyu完成签到,获得积分10
3秒前
5秒前
LELELE发布了新的文献求助10
6秒前
6秒前
zyh完成签到,获得积分20
6秒前
lyn发布了新的文献求助10
7秒前
辛勤觅儿完成签到,获得积分10
8秒前
9秒前
兰江发布了新的文献求助10
9秒前
11秒前
Akim应助无心的土豆采纳,获得10
11秒前
辛勤觅儿发布了新的文献求助10
12秒前
cocolu应助lyn采纳,获得10
13秒前
lilivite应助一九九七采纳,获得20
15秒前
16秒前
MM完成签到,获得积分10
17秒前
17秒前
wuyu发布了新的文献求助10
18秒前
HongJiang发布了新的文献求助10
19秒前
20秒前
20秒前
LELELE完成签到,获得积分10
22秒前
23秒前
耶耶完成签到 ,获得积分20
24秒前
流星完成签到,获得积分10
26秒前
英俊的铭应助壮观以松采纳,获得10
27秒前
29秒前
我是老大应助野性的枕头采纳,获得10
29秒前
小二郎应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
英姑应助科研通管家采纳,获得10
33秒前
乐乐应助科研通管家采纳,获得10
34秒前
子车茗应助科研通管家采纳,获得20
34秒前
34秒前
34秒前
领导范儿应助科研通管家采纳,获得10
34秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268088
求助须知:如何正确求助?哪些是违规求助? 2907498
关于积分的说明 8342309
捐赠科研通 2578037
什么是DOI,文献DOI怎么找? 1401619
科研通“疑难数据库(出版商)”最低求助积分说明 655096
邀请新用户注册赠送积分活动 634162