已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting transporter mediated drug–drug interactions via static and dynamic physiologically based pharmacokinetic modeling: A comprehensive insight on where we are now and the way forward

基于生理学的药代动力学模型 运输机 计算生物学 药理学 药品 计算机科学 不可用 药代动力学 医学 数据科学 生物 工程类 生物化学 基因 可靠性工程
作者
Gautam Vijaywargi,Sivacharan Kollipara,Tausif Ahmed,Siddharth Chachad
出处
期刊:Biopharmaceutics & Drug Disposition [Wiley]
卷期号:44 (3): 195-220 被引量:8
标识
DOI:10.1002/bdd.2339
摘要

Abstract The greater utilization and acceptance of physiologically‐based pharmacokinetic (PBPK) modeling to evaluate the potential metabolic drug–drug interactions is evident by the plethora of literature, guidance's, and regulatory dossiers available in the literature. In contrast, it is not widely used to predict transporter‐mediated DDI (tDDI). This is attributed to the unavailability of accurate transporter tissue expression levels, the absence of accurate in vitro to in vivo extrapolations (IVIVE), enzyme‐transporter interplay, and a lack of specific probe substrates. Additionally, poor understanding of the inhibition/induction mechanisms coupled with the inability to determine unbound concentrations at the interaction site made tDDI assessment challenging. Despite these challenges, continuous improvements in IVIVE approaches enabled accurate tDDI predictions. Furthermore, the necessity of extrapolating tDDI's to special (pediatrics, pregnant, geriatrics) and diseased (renal, hepatic impaired) populations is gaining impetus and is encouraged by regulatory authorities. This review aims to visit the current state‐of‐the‐art and summarizes contemporary knowledge on tDDI predictions. The current understanding and ability of static and dynamic PBPK models to predict tDDI are portrayed in detail. Peer‐reviewed transporter abundance data in special and diseased populations from recent publications were compiled, enabling direct input into modeling tools for accurate tDDI predictions. A compilation of regulatory guidance's for tDDI's assessment and success stories from regulatory submissions are presented. Future perspectives and challenges of predicting tDDI in terms of in vitro system considerations, endogenous biomarkers, the use of empirical scaling factors, enzyme‐transporter interplay, and acceptance criteria for model validation to meet the regulatory expectations were discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅夏发布了新的文献求助10
刚刚
刚刚
1秒前
2秒前
符生发布了新的文献求助10
3秒前
杨欣发布了新的文献求助10
4秒前
杨欣发布了新的文献求助10
4秒前
杨欣发布了新的文献求助10
4秒前
杨欣发布了新的文献求助10
4秒前
杨欣发布了新的文献求助10
4秒前
4秒前
Derson发布了新的文献求助10
4秒前
坦率的砖头关注了科研通微信公众号
8秒前
陈嘉嘉发布了新的文献求助10
8秒前
JamesPei应助勤奋夜安采纳,获得10
10秒前
胡淼淼完成签到,获得积分10
11秒前
13秒前
15秒前
Thien发布了新的文献求助10
18秒前
19秒前
善学以致用应助朴素紫山采纳,获得10
21秒前
23秒前
24秒前
情怀应助134345采纳,获得10
24秒前
25秒前
面壁思过完成签到,获得积分10
25秒前
马到成功完成签到,获得积分10
25秒前
HMF发布了新的文献求助10
25秒前
林乐应助苗英采纳,获得10
25秒前
26秒前
科研通AI2S应助wbcl采纳,获得10
26秒前
火星上的幻雪完成签到,获得积分10
26秒前
完美世界应助大圣采纳,获得10
27秒前
28秒前
28秒前
28秒前
29秒前
vv发布了新的文献求助10
29秒前
痴情的向薇完成签到,获得积分20
29秒前
zyq发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934621
求助须知:如何正确求助?哪些是违规求助? 4202448
关于积分的说明 13057403
捐赠科研通 3976780
什么是DOI,文献DOI怎么找? 2179205
邀请新用户注册赠送积分活动 1195431
关于科研通互助平台的介绍 1106771