A survey on deep learning based knowledge tracing

深度学习 计算机科学 领域(数学) 人工智能 数据科学 主流 订单(交换) 追踪 政治学 财务 数学 操作系统 经济 法学 纯数学
作者
Xiangyu Song,Jianxin Li,Taotao Cai,Shuiqiao Yang,Tingting Yang,Chengfei Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:258: 110036-110036 被引量:98
标识
DOI:10.1016/j.knosys.2022.110036
摘要

“Knowledge tracing (KT)” is an emerging and popular research topic in the field of online education that seeks to assess students’ mastery of a concept based on their historical learning of relevant exercises on an online education system in order to make the most accurate prediction of student performance. Since there have been a large number of KT models, we attempt to systematically investigate, compare and discuss different aspects of KT models to find out the differences between these models in order to better assist researchers in this field. The findings of this study have made substantial contributions to the progress of online education, which is especially relevant in light of the current global pandemic. As a result of the current expansion of deep learning methods over the last decade, researchers have been tempted to include deep learning strategies into KT research with astounding results. In this paper, we evaluate current research on deep learning-based KT in the main categories listed below. In particular, we explore (1) a granular categorisation of the technological solutions presented by the mainstream Deep Learning-based KT Models. (2) a detailed analysis of techniques to KT, with a special emphasis on Deep Learning-based KT Models. (3) an analysis of the technological solutions and major improvement presented by Deep Learning-based KT models. In conclusion, we discuss possible future research directions in the field of Deep Learning-based KT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助核桃采纳,获得10
刚刚
koukaki完成签到,获得积分10
刚刚
owldan完成签到 ,获得积分10
刚刚
卢静静发布了新的文献求助10
2秒前
2秒前
4秒前
哈哈哈发布了新的文献求助10
4秒前
5秒前
Jasper应助wiwi采纳,获得30
5秒前
丘比特应助lxgz采纳,获得10
7秒前
HansStone完成签到,获得积分10
9秒前
塵埃发布了新的文献求助10
10秒前
健忘远山发布了新的文献求助10
10秒前
邱邱完成签到,获得积分20
10秒前
12秒前
拓跋箴完成签到,获得积分10
12秒前
在水一方应助鹿雅彤采纳,获得10
12秒前
JamesPei应助火星上鑫鹏采纳,获得10
13秒前
风清扬发布了新的文献求助10
13秒前
Vincey完成签到,获得积分10
15秒前
共享精神应助邱邱采纳,获得10
16秒前
Ade完成签到,获得积分10
16秒前
17秒前
拼搏的高高完成签到,获得积分10
17秒前
星辰大海应助坦率抽屉采纳,获得10
17秒前
小蘑菇应助MyMuses采纳,获得10
18秒前
传奇3应助仁爱的晓刚采纳,获得10
20秒前
22秒前
鹿雅彤完成签到,获得积分10
22秒前
解语花发布了新的文献求助30
23秒前
Ava应助岁岁平安采纳,获得10
24秒前
科研通AI2S应助大家好采纳,获得200
24秒前
25秒前
鹿雅彤发布了新的文献求助10
27秒前
29秒前
30秒前
赘婿应助典雅的俊驰采纳,获得10
30秒前
31秒前
31秒前
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578