材料科学
不稳定性
化学工程
阴极
钠
氧化物
无机化学
化学
冶金
机械
物理
工程类
物理化学
作者
Jialin Lin,Qun Huang,Kuan Dai,Yiming Feng,Xin Luo,Qun Huang,Libao Chen,Chaoping Liang,Chunxiao Zhang,Weifeng Wei
标识
DOI:10.1016/j.jpowsour.2022.232235
摘要
High operating voltage ensures high sodium utilization and high specific capacity of sodium-based layered oxides for sodium-ion batteries (SIBs), but charging to high voltage (>4.2 V vs. Na + /Na) may facilitate the irreversible phase transformation and undesirable interfacial reactions with electrolyte, resulting in severe capacity fading. Herein, we demonstrate an organic surface modification strategy to remarkably enhance the interfacial stability and electrochemical performance of high-voltage sodium-based layered oxides through a copolymer nanolayer of methacrylic acid and acrylonitrile (PMAA-AN). The copolymer nanolayer with strong electron-donating groups could anchor transition metal ions by coordinative interaction and prevent cathode materials from being corroded by electrolyte, thus slowing down interfacial structural degradation during cycling. The Na 0.67 Li 0.16 Ni 0.33 Mn 0.67 O 2+δ (NLNM) coated with moderate PMAA-AN (0.5 wt%) exhibits remarkable improvement and excellent electrochemical performance with an initial capacity of 173.4 mAh g −1 and 86.0% capacity retention after 100 cycles, a superior rate capability of 100.1 mAh g −1 at 5 C within the wide voltage range of 1.5–4.5 V. This work provides new insights on the protective mechanism of polymeric coatings with coordinative structure and pave a way to advance high‐voltage layered oxides for high‐energy‐density SIBs. A novel surface modification strategy to remarkably mitigate interfacial instability and enhance electrochemical performance of P2/O3–Na 0.67 Li 0.16 Ni 0.33 Mn 0.67 O 2+δ through a copolymer nanolayer of PMAA-AN. The robust coordination induced by strong electron-donating groups of organic PMAA-AN nanolayer can effectively anchor TM ions and suppress the generation of undesirable O2 phase above 4.2 V, minimize the excessive electrolyte decomposition and inhibit interface side reactions. • Organic coating strategy for mitigating interfacial instability of cathodes for NIBs. • PMAA-AN nanolayer can anchor TM ions and suppress the generation of O2 phase. • PMAA-AN nanolayer can suppress undesirable side reactions and improves air stability. • The 0.5 wt%PMAA-AN@NLNM exhibits remarkable enhanced electrochemical performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI