scBPGRN: Integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network

基因调控网络 计算生物学 构造(python库) 基因 表观遗传学 生物 DNA甲基化 基因组学 计算机科学 基因组 数据挖掘 生物信息学 遗传学 基因表达 程序设计语言
作者
Chenxu Xuan,Yan Wang,Bai Zhang,Wu HanWen,Tao Ding,Jie Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106249-106249 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106249
摘要

The deterioration and metastasis of cancer involve various aspects of genomic changes, including genomic DNA changes, epigenetic modifications, gene expression, and other complex interactions. Therefore, integrating single-cell multi-omics data to construct gene regulatory networks containing more omics information is of great significance for understanding the pathogenesis of cancer. In this article, an algorithm integrating single-cell RNA sequencing data and DNA methylation data to construct a gene regulatory network based on the back-propagation (BP) neural network (scBPGRN) is proposed. This algorithm uses biweight extreme correlation coefficients to measure the correlation between factors and uses neural networks to calculate generalized weights to construct gene regulation networks. Finally, the node strength is calculated to identify the genes associated with cancer. We apply the scBPGRN algorithm to hepatocellular carcinoma (HCC) data. We construct a regulatory network and identify top-ranked genes, such as MYCBP, KLHL35, PRKCZ, and SERPINA6, as the key HCC-related genes. We analyze the top 100 genes, and the HCC-related genes are concentrated in the top 20. In addition, the single cell data is found to consist of two subpopulations. We also apply scBPGRN to two subpopulations. We analyze the top 50 genes in them, and the HCC-related genes are concentrated in the top 20. The consequences of functional enrichment analysis indicate that the gene regulatory network we have constructed is valid. Our results have been verified in several pieces of literature. This study provides a reference for the integration of single-cell multi-omics data to construct gene regulatory networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TT001发布了新的文献求助10
1秒前
1秒前
赵富贵发布了新的文献求助10
1秒前
顾矜应助22采纳,获得10
1秒前
1秒前
1秒前
细心擎呢完成签到,获得积分10
1秒前
141发布了新的文献求助10
2秒前
Jasper应助双儿采纳,获得10
2秒前
科研通AI6应助糯米采纳,获得10
2秒前
炙热的谷冬完成签到,获得积分10
2秒前
科研通AI6应助Shenqm采纳,获得10
2秒前
自由灵安完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
小北发布了新的文献求助10
3秒前
3秒前
3秒前
lito发布了新的文献求助10
3秒前
3秒前
Dsk5发布了新的文献求助10
4秒前
4秒前
lualong发布了新的文献求助10
4秒前
SciKid524发布了新的文献求助10
5秒前
5秒前
5秒前
十个勤天发布了新的文献求助10
5秒前
完美世界应助爱库珀采纳,获得10
5秒前
凶狠的源智完成签到 ,获得积分10
5秒前
Drwang发布了新的文献求助10
5秒前
tanrui发布了新的文献求助10
6秒前
6秒前
大模型应助changjiaren采纳,获得10
6秒前
6秒前
炙热静枫发布了新的文献求助10
6秒前
7秒前
伊伊完成签到,获得积分10
7秒前
7秒前
xxfsx应助乌力吉采纳,获得10
7秒前
CodeCraft应助wsc采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5519544
求助须知:如何正确求助?哪些是违规求助? 4611607
关于积分的说明 14529535
捐赠科研通 4549077
什么是DOI,文献DOI怎么找? 2492697
邀请新用户注册赠送积分活动 1473841
关于科研通互助平台的介绍 1445668