scBPGRN: Integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network

基因调控网络 计算生物学 构造(python库) 基因 表观遗传学 生物 DNA甲基化 基因组学 计算机科学 基因组 数据挖掘 生物信息学 遗传学 基因表达 程序设计语言
作者
Chenxu Xuan,Yan Wang,Bai Zhang,Wu HanWen,Tao Ding,Jie Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106249-106249 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106249
摘要

The deterioration and metastasis of cancer involve various aspects of genomic changes, including genomic DNA changes, epigenetic modifications, gene expression, and other complex interactions. Therefore, integrating single-cell multi-omics data to construct gene regulatory networks containing more omics information is of great significance for understanding the pathogenesis of cancer. In this article, an algorithm integrating single-cell RNA sequencing data and DNA methylation data to construct a gene regulatory network based on the back-propagation (BP) neural network (scBPGRN) is proposed. This algorithm uses biweight extreme correlation coefficients to measure the correlation between factors and uses neural networks to calculate generalized weights to construct gene regulation networks. Finally, the node strength is calculated to identify the genes associated with cancer. We apply the scBPGRN algorithm to hepatocellular carcinoma (HCC) data. We construct a regulatory network and identify top-ranked genes, such as MYCBP, KLHL35, PRKCZ, and SERPINA6, as the key HCC-related genes. We analyze the top 100 genes, and the HCC-related genes are concentrated in the top 20. In addition, the single cell data is found to consist of two subpopulations. We also apply scBPGRN to two subpopulations. We analyze the top 50 genes in them, and the HCC-related genes are concentrated in the top 20. The consequences of functional enrichment analysis indicate that the gene regulatory network we have constructed is valid. Our results have been verified in several pieces of literature. This study provides a reference for the integration of single-cell multi-omics data to construct gene regulatory networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
刚刚
刚刚
少年愁发布了新的文献求助10
1秒前
1秒前
guozizi发布了新的文献求助30
1秒前
科目三应助困困采纳,获得10
1秒前
科研小白完成签到,获得积分10
1秒前
烟花应助Luhh采纳,获得10
1秒前
2秒前
Maxstein完成签到,获得积分10
2秒前
NexusExplorer应助leesen采纳,获得10
2秒前
3秒前
qianchen完成签到,获得积分10
3秒前
3秒前
寇博翔发布了新的文献求助10
3秒前
3秒前
4秒前
MySun完成签到,获得积分10
4秒前
Bethan完成签到,获得积分10
4秒前
4秒前
英姑应助sttail采纳,获得10
5秒前
健忘的芷荷完成签到,获得积分10
5秒前
机灵安白完成签到,获得积分10
6秒前
慕青应助啵啵虎采纳,获得10
6秒前
6秒前
昏睡的祥完成签到 ,获得积分10
6秒前
6秒前
ronalbo完成签到,获得积分20
6秒前
shengse发布了新的文献求助20
6秒前
Nyuki完成签到,获得积分10
7秒前
7秒前
泡泡糖完成签到 ,获得积分10
7秒前
7秒前
BK2008完成签到,获得积分10
7秒前
77发布了新的文献求助10
7秒前
8秒前
华无心完成签到,获得积分10
8秒前
香香完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997