scBPGRN: Integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network

基因调控网络 计算生物学 构造(python库) 基因 表观遗传学 生物 DNA甲基化 基因组学 计算机科学 基因组 数据挖掘 生物信息学 遗传学 基因表达 程序设计语言
作者
Chenxu Xuan,Yan Wang,Bai Zhang,Hanwen Wu,Tao Ding,Jie Gao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:151: 106249-106249 被引量:2
标识
DOI:10.1016/j.compbiomed.2022.106249
摘要

The deterioration and metastasis of cancer involve various aspects of genomic changes, including genomic DNA changes, epigenetic modifications, gene expression, and other complex interactions. Therefore, integrating single-cell multi-omics data to construct gene regulatory networks containing more omics information is of great significance for understanding the pathogenesis of cancer. In this article, an algorithm integrating single-cell RNA sequencing data and DNA methylation data to construct a gene regulatory network based on the back-propagation (BP) neural network (scBPGRN) is proposed. This algorithm uses biweight extreme correlation coefficients to measure the correlation between factors and uses neural networks to calculate generalized weights to construct gene regulation networks. Finally, the node strength is calculated to identify the genes associated with cancer. We apply the scBPGRN algorithm to hepatocellular carcinoma (HCC) data. We construct a regulatory network and identify top-ranked genes, such as MYCBP, KLHL35, PRKCZ, and SERPINA6, as the key HCC-related genes. We analyze the top 100 genes, and the HCC-related genes are concentrated in the top 20. In addition, the single cell data is found to consist of two subpopulations. We also apply scBPGRN to two subpopulations. We analyze the top 50 genes in them, and the HCC-related genes are concentrated in the top 20. The consequences of functional enrichment analysis indicate that the gene regulatory network we have constructed is valid. Our results have been verified in several pieces of literature. This study provides a reference for the integration of single-cell multi-omics data to construct gene regulatory networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助zfy采纳,获得10
2秒前
sak完成签到,获得积分10
3秒前
Shuo Yang发布了新的文献求助20
3秒前
呜呜呜呜发布了新的文献求助10
3秒前
在水一方应助hhzz采纳,获得10
3秒前
旧是完成签到 ,获得积分10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
杨小胖完成签到 ,获得积分10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
mm发布了新的文献求助10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
RC_Wang应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得30
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
归海含烟完成签到,获得积分10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
shire应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
匹诺曹发布了新的文献求助10
7秒前
唐画完成签到 ,获得积分10
7秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808