scBPGRN: Integrating single-cell multi-omics data to construct gene regulatory networks based on BP neural network

基因调控网络 计算生物学 构造(python库) 基因 表观遗传学 生物 DNA甲基化 基因组学 计算机科学 基因组 数据挖掘 生物信息学 遗传学 基因表达 程序设计语言
作者
Chenxu Xuan,Yan Wang,Bai Zhang,Hanwen Wu,Tao Ding,Jie Gao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:151: 106249-106249 被引量:2
标识
DOI:10.1016/j.compbiomed.2022.106249
摘要

The deterioration and metastasis of cancer involve various aspects of genomic changes, including genomic DNA changes, epigenetic modifications, gene expression, and other complex interactions. Therefore, integrating single-cell multi-omics data to construct gene regulatory networks containing more omics information is of great significance for understanding the pathogenesis of cancer. In this article, an algorithm integrating single-cell RNA sequencing data and DNA methylation data to construct a gene regulatory network based on the back-propagation (BP) neural network (scBPGRN) is proposed. This algorithm uses biweight extreme correlation coefficients to measure the correlation between factors and uses neural networks to calculate generalized weights to construct gene regulation networks. Finally, the node strength is calculated to identify the genes associated with cancer. We apply the scBPGRN algorithm to hepatocellular carcinoma (HCC) data. We construct a regulatory network and identify top-ranked genes, such as MYCBP, KLHL35, PRKCZ, and SERPINA6, as the key HCC-related genes. We analyze the top 100 genes, and the HCC-related genes are concentrated in the top 20. In addition, the single cell data is found to consist of two subpopulations. We also apply scBPGRN to two subpopulations. We analyze the top 50 genes in them, and the HCC-related genes are concentrated in the top 20. The consequences of functional enrichment analysis indicate that the gene regulatory network we have constructed is valid. Our results have been verified in several pieces of literature. This study provides a reference for the integration of single-cell multi-omics data to construct gene regulatory networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ohno耶耶耶发布了新的文献求助10
1秒前
SweetyANN发布了新的文献求助10
1秒前
1秒前
niceweiwei发布了新的文献求助10
2秒前
ZG发布了新的文献求助10
2秒前
2秒前
迷路安雁完成签到,获得积分10
3秒前
3秒前
yuery完成签到,获得积分10
3秒前
牛牛牛完成签到,获得积分10
3秒前
A1len完成签到,获得积分10
4秒前
爱写论文的小胡完成签到,获得积分10
4秒前
拉长的问晴完成签到,获得积分10
5秒前
Yukikig完成签到,获得积分10
5秒前
哈哈哈哈哈完成签到,获得积分10
5秒前
tofms完成签到,获得积分10
5秒前
没有蛀牙发布了新的文献求助10
5秒前
Starain完成签到,获得积分10
5秒前
WW完成签到,获得积分10
6秒前
6秒前
6秒前
zhengke924完成签到,获得积分10
7秒前
aaaaa完成签到,获得积分10
7秒前
GERRARD完成签到,获得积分10
7秒前
yuery发布了新的文献求助10
7秒前
街道办事部完成签到,获得积分10
7秒前
我是老大应助懿甜采纳,获得10
8秒前
牛牛牛发布了新的文献求助10
9秒前
OMR123完成签到,获得积分10
9秒前
CZF完成签到 ,获得积分10
9秒前
10秒前
CipherSage应助夏姬宁静采纳,获得10
10秒前
机智访琴完成签到,获得积分10
10秒前
Emma完成签到,获得积分10
11秒前
粗心的草莓完成签到,获得积分10
11秒前
贪玩海之完成签到,获得积分10
11秒前
Kirito完成签到,获得积分10
11秒前
科研牛人完成签到,获得积分10
12秒前
程smile笑完成签到,获得积分10
12秒前
Sun1c7完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874