Volatility Puzzle: Long Memory or Antipersistency

自回归分数积分移动平均 自回归模型 数学 计量经济学 参数统计 波动性(金融) 经济 样品(材料) 背景(考古学) 长记忆 数理经济学 统计 历史 物理 热力学 考古
作者
Shuping Shi,Jun Yu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (7): 3861-3883 被引量:21
标识
DOI:10.1287/mnsc.2022.4552
摘要

The log realized volatility (RV) is often modeled as an autoregressive fractionally integrated moving average model ARFIMA([Formula: see text]). Two conflicting empirical results have been found in the literature. One stream shows that log RV has a long memory (i.e., the fractional parameter d > 0). The other stream suggests that the autoregressive coefficient α is near unity with antipersistent errors (i.e., d < 0). This paper explains how these conflicting empirical findings can coexist in the context of ARFIMA([Formula: see text]) model by examining the finite sample properties of popular estimation methods, including semiparametric methods and parametric maximum likelihood methods. The finite sample results suggest that it is challenging to distinguish [Formula: see text] (ARFIMA([Formula: see text]) with α close to 0 and d close to 0.5) from [Formula: see text] (ARFIMA([Formula: see text]) with α close to unity and d close to –0.5). An intuitive explanation is given. For the 10 financial assets considered, despite that no definitive conclusions can be drawn regarding the data-generating process, we find that the frequency domain maximum likelihood (or Whittle) method can generate the most accurate out-of-sample forecasts. This paper was accepted by Lukas Schmid, finance. Funding: S. Shi acknowledges research support from the Australian Research Council [Project DE190100840]. J. Yu acknowledges financial support from the Ministry of Education–Singapore Tier 2 Academic Research Fund [Project MOE-T2EP402A20-0002] and the Lee Foundation. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2022.4552 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助饱满的妙梦采纳,获得10
刚刚
mookie发布了新的文献求助10
1秒前
宋启文完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
yurunxintian完成签到,获得积分10
2秒前
稳如老狗发布了新的文献求助10
2秒前
2秒前
太牛的GGB发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
12345完成签到,获得积分10
4秒前
落寞灵安发布了新的文献求助10
4秒前
卢玥沅发布了新的文献求助10
4秒前
Gwinn发布了新的文献求助10
5秒前
慢羊羊发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
宋启文发布了新的文献求助10
5秒前
mtt应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
27发布了新的文献求助10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
wg发布了新的文献求助10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
orixero应助科研通管家采纳,获得10
6秒前
amanda应助科研通管家采纳,获得20
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4933396
求助须知:如何正确求助?哪些是违规求助? 4201613
关于积分的说明 13054063
捐赠科研通 3975660
什么是DOI,文献DOI怎么找? 2178529
邀请新用户注册赠送积分活动 1194810
关于科研通互助平台的介绍 1106200