化学
偶极子
分子
电荷(物理)
天青
化学物理
电子能带结构
纳米技术
物理
凝聚态物理
光化学
量子力学
材料科学
有机化学
作者
Mingyao Li,Huanyan Fu,Boyu Wang,Jie Cheng,Weilin Hu,Bing Yin,Peizhen Peng,Shuyao Zhou,Xike Gao,Chuancheng Jia,Xuefeng Guo
摘要
The PNP structure realized by energy band engineering is widely used in various electronic and optoelectronic devices. In this work, we succeed in constructing a PNP-type single-molecule junction and explore the intrinsic characteristics of the PNP structure at the single-molecule level. A back-to-back azulene molecule is designed with opposite ∼1.7 D dipole moments to create PNP-type single-molecule junctions. In combination with theoretical and experimental studies, it is found that the intrinsic dipole can effectively adjust single-molecule charge transport and the corresponding potential barriers. This energy band control and charge transport regulation at the single-molecule level improve deep understanding of molecular charge transport mechanisms and provide important insights into the development of high-performance functional molecular nanocircuits toward practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI