二茂铁
壳聚糖
羟基自由基
化学
催化作用
吸附
甲基橙
橙色G
光催化
核化学
有机化学
激进的
电化学
电极
物理化学
作者
Haiyang Xie,Minghui Meng,Guoqiang Lü,Yongmin Zhang
标识
DOI:10.1016/j.ijbiomac.2024.129699
摘要
Dye-containing wastewater treatment has been a major long-term global challenge. For this purpose, a novel bio-based microspheres (CS-FC) with high specific surface area (63.24 m2·g−1) and nano-channels (17.95 nm) was prepared using chitosan as the framework and ferrocene as a crosslinking active group. CS-FC not only has the ability to rapidly enrich methyl orange (MO) through hydrogen-bonding and electrostatic attraction, but also almost completely degrades it in the presence of H2O2/K2S2O8 through a synergistic radical/non-radical mechanism under the activating effect of ferrocene. Without H2O2/K2S2O8, the maximum MO adsorption capacity of CS-FC is in the range 871–1050 mg·g−1, and conforms to a Langmuir isothermal model with pseudo-second-order kinetics. In the presence of H2O2/K2S2O8, the removal of MO dramatically increased from 32 % to nearly 100 % after incubation for 60 min, due to the simultaneous formation of highly reactive 1O2 and ·OH. The significant contribution from 1O2 endowed CS-FC/H2O2/K2S2O8 with high universality for degrading various organic pollutants (including azo dyes and antibiotics), a wide pH window (2–8), and low sensitivity to co-existing ions. Such cost-effective, recyclable porous bio-based microspheres are suitable for heterogeneous Fenton-like catalysis in organic wastewater treatment that rely on synergistic radical/non-radical reaction pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI