清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Improving urban flood prediction using LSTM-DeepLabv3+ and Bayesian optimization with spatiotemporal feature fusion

特征(语言学) 人工智能 大洪水 计算机科学 贝叶斯概率 机器学习 贝叶斯优化 融合 模式识别(心理学) 数据挖掘 地理 哲学 语言学 考古
作者
Zuxiang Situ,Qi Wang,Shuai Teng,Wanen Feng,Gongfa Chen,Qianqian Zhou,Guangtao Fu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:630: 130743-130743 被引量:30
标识
DOI:10.1016/j.jhydrol.2024.130743
摘要

Deep learning models have become increasingly popular for flood prediction due to their superior accuracy and efficiency compared to traditional methods. However, current models often rely on separate spatial or temporal feature analysis and have limitations on the types, numbers, and dimensions of input data. This study proposes a novel framework to combine the strengths of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) by connecting the output of RNN to the deepest part of CNN (i.e., the layer with the richest features). The innovative spatiotemporal feature fusion method is developed to strategically integrate the temporal (e.g., rainfall and flood series) and spatial driving factors (e.g., DEM, imperviousness, drainage network, and their related features). The framework focuses on three critical problems: the identification of key driving factors, the design of hybrid deep learning models, and problem formulation and associated optimization algorithms. We verified the framework through a case study in North China. Bayesian optimization was first applied to identify the seven most influential factors and determine their best combination strategy as the model inputs. Then, the optimal hybrid model LSTM-DeepLabv3+ was identified from 12 model combinations and achieved high prediction accuracies in terms of Mean Absolute Error, Root Mean Square Error, Nash-Sutcliffe Efficiency, and Kling-Gupta Efficiency of 0.0071, 0.0253, 0.9730, and 0.7549 under various rainfall conditions. This study demonstrates that the new framework provides effective hybrid models with significantly improved computational efficiency (about 1/125 of the traditional process-based computation time) and offers a promising solution for real-time urban flood prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dryang完成签到 ,获得积分10
1秒前
7秒前
煜琪完成签到 ,获得积分10
14秒前
三日完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
27秒前
31秒前
50秒前
53秒前
57秒前
1分钟前
ML完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Mio发布了新的文献求助10
2分钟前
surprise完成签到 ,获得积分10
2分钟前
乐乐应助Mio采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
77完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
热情依白完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
安尔完成签到 ,获得积分10
5分钟前
简单应助司空天德采纳,获得40
5分钟前
Asura完成签到,获得积分10
5分钟前
古月完成签到 ,获得积分10
5分钟前
ABCD完成签到 ,获得积分10
5分钟前
5分钟前
滋滋发布了新的文献求助10
5分钟前
滋滋完成签到,获得积分20
6分钟前
波里舞完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788831
求助须知:如何正确求助?哪些是违规求助? 5712404
关于积分的说明 15473943
捐赠科研通 4916818
什么是DOI,文献DOI怎么找? 2646580
邀请新用户注册赠送积分活动 1594269
关于科研通互助平台的介绍 1548687