Improving urban flood prediction using LSTM-DeepLabv3+ and Bayesian optimization with spatiotemporal feature fusion

特征(语言学) 人工智能 大洪水 计算机科学 贝叶斯概率 机器学习 贝叶斯优化 融合 模式识别(心理学) 数据挖掘 地理 语言学 哲学 考古
作者
Zuxiang Situ,Qi Wang,Gongfa Chen,Wanen Feng,Gongfa Chen,Qianqian Zhou,Guangtao Fu
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:630: 130743-130743
标识
DOI:10.1016/j.jhydrol.2024.130743
摘要

Deep learning models have become increasingly popular for flood prediction due to their superior accuracy and efficiency compared to traditional methods. However, current models often rely on separate spatial or temporal feature analysis and have limitations on the types, numbers, and dimensions of input data. This study proposes a novel framework to combine the strengths of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) by connecting the output of RNN to the deepest part of CNN (i.e., the layer with the richest features). The innovative spatiotemporal feature fusion method is developed to strategically integrate the temporal (e.g., rainfall and flood series) and spatial driving factors (e.g., DEM, imperviousness, drainage network, and their related features). The framework focuses on three critical problems: the identification of key driving factors, the design of hybrid deep learning models, and problem formulation and associated optimization algorithms. We verified the framework through a case study in North China. Bayesian optimization was first applied to identify the seven most influential factors and determine their best combination strategy as the model inputs. Then, the optimal hybrid model LSTM-DeepLabv3+ was identified from 12 model combinations and achieved high prediction accuracies in terms of Mean Absolute Error, Root Mean Square Error, Nash-Sutcliffe Efficiency, and Kling-Gupta Efficiency of 0.0071, 0.0253, 0.9730, and 0.7549 under various rainfall conditions. This study demonstrates that the new framework provides effective hybrid models with significantly improved computational efficiency (about 1/125 of the traditional process-based computation time) and offers a promising solution for real-time urban flood prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吲哚并咔唑应助阿柒采纳,获得10
1秒前
You完成签到,获得积分10
2秒前
2秒前
耍酷书雁完成签到 ,获得积分10
3秒前
3秒前
深情安青应助反方向的枫采纳,获得10
3秒前
4秒前
故意的如冬完成签到,获得积分10
4秒前
weiboo发布了新的文献求助10
4秒前
YUKINO完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
微风完成签到,获得积分10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
8秒前
xjcy应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
天天快乐应助xiiin采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
NexusExplorer应助ashton采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
Cai发布了新的文献求助10
9秒前
大个应助姜起蛟采纳,获得10
9秒前
10秒前
lucky发布了新的文献求助10
10秒前
owlhealth发布了新的文献求助10
10秒前
11秒前
青灿笑发布了新的文献求助10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301649
求助须知:如何正确求助?哪些是违规求助? 2936248
关于积分的说明 8476984
捐赠科研通 2610006
什么是DOI,文献DOI怎么找? 1424988
科研通“疑难数据库(出版商)”最低求助积分说明 662216
邀请新用户注册赠送积分活动 646340