亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving urban flood prediction using LSTM-DeepLabv3+ and Bayesian optimization with spatiotemporal feature fusion

特征(语言学) 人工智能 大洪水 计算机科学 贝叶斯概率 机器学习 贝叶斯优化 融合 模式识别(心理学) 数据挖掘 地理 哲学 语言学 考古
作者
Zuxiang Situ,Qi Wang,Shuai Teng,Wanen Feng,Gongfa Chen,Qianqian Zhou,Guangtao Fu
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130743-130743 被引量:18
标识
DOI:10.1016/j.jhydrol.2024.130743
摘要

Deep learning models have become increasingly popular for flood prediction due to their superior accuracy and efficiency compared to traditional methods. However, current models often rely on separate spatial or temporal feature analysis and have limitations on the types, numbers, and dimensions of input data. This study proposes a novel framework to combine the strengths of Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) by connecting the output of RNN to the deepest part of CNN (i.e., the layer with the richest features). The innovative spatiotemporal feature fusion method is developed to strategically integrate the temporal (e.g., rainfall and flood series) and spatial driving factors (e.g., DEM, imperviousness, drainage network, and their related features). The framework focuses on three critical problems: the identification of key driving factors, the design of hybrid deep learning models, and problem formulation and associated optimization algorithms. We verified the framework through a case study in North China. Bayesian optimization was first applied to identify the seven most influential factors and determine their best combination strategy as the model inputs. Then, the optimal hybrid model LSTM-DeepLabv3+ was identified from 12 model combinations and achieved high prediction accuracies in terms of Mean Absolute Error, Root Mean Square Error, Nash-Sutcliffe Efficiency, and Kling-Gupta Efficiency of 0.0071, 0.0253, 0.9730, and 0.7549 under various rainfall conditions. This study demonstrates that the new framework provides effective hybrid models with significantly improved computational efficiency (about 1/125 of the traditional process-based computation time) and offers a promising solution for real-time urban flood prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
9秒前
40秒前
47秒前
49秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Jasper应助Delight采纳,获得10
1分钟前
李健应助烟景采纳,获得10
1分钟前
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
Huginn发布了新的文献求助10
2分钟前
003完成签到,获得积分10
2分钟前
2分钟前
汉堡包应助Huginn采纳,获得30
2分钟前
2分钟前
Delight发布了新的文献求助10
2分钟前
YifanWang应助研友_kngjrL采纳,获得30
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
烟景发布了新的文献求助10
3分钟前
动人的又菡完成签到,获得积分10
3分钟前
3分钟前
3分钟前
千里草完成签到,获得积分10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
MchemG应助科研通管家采纳,获得10
3分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128693
捐赠科研通 3238333
什么是DOI,文献DOI怎么找? 1789703
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069