上睑下垂
基因敲除
基因剔除小鼠
促炎细胞因子
中性粒细胞胞外陷阱
脂多糖
坏死性下垂
医学
化学
生物
程序性细胞死亡
受体
炎症体
内科学
细胞凋亡
炎症
免疫学
生物化学
作者
Li Huang,Xiaowu Tan,Weixia Xuan,Qing Luo,Li Xie,Yun-Zhu Xi,Rong Li,Li Li,Feifan Li,Meiyun Zhao,Yongliang Jiang,Xu Wu
标识
DOI:10.1016/j.ajpath.2024.02.011
摘要
Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influences NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of ficolin-A, but not ficolin-B, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in ficolin-A knockout mice. In vitro, neutrophils derived from Fcna−/− mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, gasdermin D knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas ficolin-2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D–mediated pyroptosis. Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influences NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of ficolin-A, but not ficolin-B, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in ficolin-A knockout mice. In vitro, neutrophils derived from Fcna−/− mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, gasdermin D knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas ficolin-2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D–mediated pyroptosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI