已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

TTSNet: State-of-Charge Estimation of Li-Ion Battery in Electrical Vehicles With Temporal Transformer-Based Sequence Network

稳健性(进化) 编码 荷电状态 计算机科学 变压器 扩展卡尔曼滤波器 滑动窗口协议 卡尔曼滤波器 原始数据 人工智能 电压 数据挖掘 模式识别(心理学) 工程类 电池(电) 电气工程 生物化学 化学 功率(物理) 物理 程序设计语言 量子力学 窗口(计算) 基因 操作系统
作者
Zhengyi Bao,Jiahao Nie,Huipin Lin,Kejie Gao,Zhiwei He,Mingyu Gao
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:73 (6): 7838-7851 被引量:11
标识
DOI:10.1109/tvt.2024.3350663
摘要

Accurate estimating the state-of-charge (SOC) of Li-ion battery contributes significantly to electric vehicle safety. Existing methods typically focus on the traditional recurrent neural networks to encode time series features for SOC estimation. However, these methods rely solely on their own structure to extract time series correlated features, ignoring a significant amount of information on temporal dimension. To address this issue, this paper proposes a temporal transformer-based sequence network (TTSNet) that can make full use of temporal dimensional information to model the relationship between the input and SOC. Specifically, the proposed network splits the raw data into three branches including voltage, current, and temperature, as well as extracts the corresponding primary semantic features. It then uses a temporal transformer to effectively encode the features of temporal dimensional information. The resulting features are further fed into an attention-guided feature fusion module to interact information among voltage, current, and temperature branches for subsequent SOC estimation. To enhance the network's resilience for long time sequences, a sliding time window technique is introduced to pre-process the raw data. Besides, a Kalman filter is incorporated as post-processing to smooth the output to guide a more accurate SOC estimation. Comprehensive experiments are conducted on battery open datasets and vehicle operation datasets to verify the proposed method. The results demonstrate that the proposed method achieves high accuracy and strong robustness in both datasets, with average MAE, RMSE, and $\mathrm{R^{2}}$ values of 0.506%, 0.694%, and 99.791%, respectively. The code is available at https://github.com/haooozi/TTSNet .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗷嗷发布了新的文献求助10
1秒前
2秒前
4秒前
坚强的广山应助RRRRRRR采纳,获得200
5秒前
夏紊完成签到 ,获得积分10
5秒前
Thriving完成签到,获得积分20
5秒前
6秒前
西风惊绿完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
qqa发布了新的文献求助10
10秒前
10秒前
ZHUGE发布了新的文献求助10
10秒前
小蘑菇应助fatevaa采纳,获得10
10秒前
儒雅香彤完成签到 ,获得积分10
11秒前
11秒前
哦豁发布了新的文献求助10
11秒前
Ferroptosis发布了新的文献求助10
12秒前
RRRRRRR完成签到,获得积分10
12秒前
12秒前
13秒前
ronnie发布了新的文献求助10
14秒前
14秒前
allezallez发布了新的文献求助10
14秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
爱静静应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
爱静静应助科研通管家采纳,获得10
15秒前
桐桐应助科研通管家采纳,获得10
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
16秒前
爆米花应助科研通管家采纳,获得30
16秒前
爱静静应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555447
求助须知:如何正确求助?哪些是违规求助? 3131097
关于积分的说明 9390003
捐赠科研通 2830593
什么是DOI,文献DOI怎么找? 1556091
邀请新用户注册赠送积分活动 726459
科研通“疑难数据库(出版商)”最低求助积分说明 715756