陶瓷电容器
材料科学
电容器
储能
陶瓷
钛
电压
光电子学
复合材料
工程物理
电气工程
冶金
热力学
功率(物理)
物理
工程类
作者
Zhongqian Lv,Teng Lü,Zhen Liu,Tengfei Hu,Zhichao Hong,Shaobo Guo,Zequan Xu,Yunxiong Song,Yonghong Chen,Xiangyong Zhao,Zhisheng Lin,Dehong Yu,Yun Liu,Genshui Wang
标识
DOI:10.1002/aenm.202304291
摘要
Abstract With the gradual promotion of new energy technologies, there is a growing demand for capacitors with high energy storage density, high operating temperature, high operating voltage, and good temperature stability. In recent years, researchers have been devoted to improving the energy storage properties of lead‐based, titanium‐based, and iron‐based multilayer ceramic capacitors (MLCCs). However, limited research has been conducted into MLCC development using NaNbO 3 (NN)‐based materials. In this paper, the successful achievement of excellent overall energy storage performance in a novel NaNbO 3 –(Bi 0.5 Na 0.5 )TiO 3 –Bi(Mg 0.5 Hf 0.5 )O 3 lead‐free MLCCs is presented. The disordered tilting around the c p axis, disrupts Na and Bi ions' long‐range displacements and induces PNRs and strong relaxor behavior, which ensures a superior energy storage performance, together with the multilayer ceramic design strategy. As a result, the NN‐based MLCC device presents an ultra‐high W rec = 12.65 J cm −3 and η = 88.5%, simultaneously showing superior temperature stability ( W rec varies <±1% and η varies <±6% from −50 to 125 °C) and fatigue resistance ( W rec and η vary <±1% over 10 7 cycles). This study highlights the advanced energy storage potential of NaNbO 3 ‐based MLCCs for various applications, and ushers in a new era for designing high‐performance lead‐free capacitors that can operate in harsh environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI