Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications

支持向量机 燃烧 人工智能 计算机科学 机器学习 聚类分析 化学 有机化学
作者
Sadaf Batool,Jeffrey Naber,Mahdi Shahbakhti
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:144: 105838-105838 被引量:2
标识
DOI:10.1016/j.conengprac.2023.105838
摘要

This paper presents the application of machine learning classification algorithms to identify and classify different heat release rate (HRR) shapes to control the combustion for an optimal multi-mode low-temperature combustion (LTC) engine operation. Low-temperature combustion engine produces low nitrogen oxides (NOx) and soot emissions and offers high thermal efficiency. But high in-cylinder pressure rise rates limit the operating range of the LTC engine. Therefore, it is imperative to control combustion in the LTC engine for safe operation. To this end, the HRR traces for over six hundred engine operating conditions are classified using supervised (i.e., Decision Tree, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM)) and unsupervised (i.e., Kmeans clustering) machine learning approaches to segregate different combustion regimes based on HRR shape. Kmeans clustering was not successful in classifying the HRR shapes. Among different supervised machine learning techniques, SVM has proved to be the best method, having an overall classifier prediction accuracy of 92.4% for identifying the distinct shapes using normalized HRR data. In addition, three classifiers have been trained based on the combustion parameters and control inputs. These classifiers are then used as scheduling variables to develop predictive models. A model predictive control (MPC) framework is developed to control multi-mode LTC engine on cycle-to-cycle basis. The MPC framework achieved the simultaneous reference tracking of combustion phasing (CA50) and indicated mean effective pressure (IMEP) while constraining maximum pressure rise rate (MPRR) below 8 bar/CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的飞松完成签到,获得积分10
刚刚
认真火车完成签到,获得积分10
刚刚
开朗千山完成签到,获得积分10
刚刚
务实的奇迹完成签到,获得积分10
刚刚
刚刚
科研通AI6应助崔雨旋采纳,获得10
1秒前
1秒前
cm完成签到,获得积分10
1秒前
大模型应助Danke采纳,获得10
2秒前
Dreamy发布了新的文献求助10
2秒前
今后应助乍见之欢采纳,获得10
2秒前
2秒前
3秒前
3秒前
HCKACECE发布了新的文献求助10
3秒前
拼搏书琴发布了新的文献求助10
4秒前
4秒前
DDD发布了新的文献求助10
5秒前
滔滔完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
文艺月亮完成签到,获得积分10
5秒前
薯条完成签到 ,获得积分10
5秒前
6秒前
wangchong发布了新的文献求助10
6秒前
6秒前
6秒前
认真火车发布了新的文献求助10
7秒前
7秒前
8秒前
J_C_Van发布了新的文献求助10
8秒前
lvzhou发布了新的文献求助30
8秒前
9秒前
星辰大海应助徐hb采纳,获得10
9秒前
沉舟发布了新的文献求助10
9秒前
10秒前
如果发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5237952
求助须知:如何正确求助?哪些是违规求助? 4405573
关于积分的说明 13711175
捐赠科研通 4273871
什么是DOI,文献DOI怎么找? 2345256
邀请新用户注册赠送积分活动 1342382
关于科研通互助平台的介绍 1300263