亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications

支持向量机 燃烧 人工智能 计算机科学 机器学习 聚类分析 化学 有机化学
作者
Sadaf Batool,Jeffrey Naber,Mahdi Shahbakhti
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:144: 105838-105838 被引量:2
标识
DOI:10.1016/j.conengprac.2023.105838
摘要

This paper presents the application of machine learning classification algorithms to identify and classify different heat release rate (HRR) shapes to control the combustion for an optimal multi-mode low-temperature combustion (LTC) engine operation. Low-temperature combustion engine produces low nitrogen oxides (NOx) and soot emissions and offers high thermal efficiency. But high in-cylinder pressure rise rates limit the operating range of the LTC engine. Therefore, it is imperative to control combustion in the LTC engine for safe operation. To this end, the HRR traces for over six hundred engine operating conditions are classified using supervised (i.e., Decision Tree, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM)) and unsupervised (i.e., Kmeans clustering) machine learning approaches to segregate different combustion regimes based on HRR shape. Kmeans clustering was not successful in classifying the HRR shapes. Among different supervised machine learning techniques, SVM has proved to be the best method, having an overall classifier prediction accuracy of 92.4% for identifying the distinct shapes using normalized HRR data. In addition, three classifiers have been trained based on the combustion parameters and control inputs. These classifiers are then used as scheduling variables to develop predictive models. A model predictive control (MPC) framework is developed to control multi-mode LTC engine on cycle-to-cycle basis. The MPC framework achieved the simultaneous reference tracking of combustion phasing (CA50) and indicated mean effective pressure (IMEP) while constraining maximum pressure rise rate (MPRR) below 8 bar/CAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
爆米花应助哈哈采纳,获得10
22秒前
26秒前
31秒前
38秒前
cc完成签到,获得积分10
39秒前
41秒前
Re完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
哈哈发布了新的文献求助10
1分钟前
1分钟前
闪闪涫应助西升东落采纳,获得20
1分钟前
何安寒发布了新的文献求助30
1分钟前
耶椰耶完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
西宁发布了新的文献求助10
2分钟前
汉堡包应助lin采纳,获得10
2分钟前
2分钟前
lin发布了新的文献求助10
2分钟前
王雪晗完成签到 ,获得积分10
2分钟前
何安寒完成签到,获得积分10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628200
求助须知:如何正确求助?哪些是违规求助? 4716020
关于积分的说明 14963827
捐赠科研通 4785884
什么是DOI,文献DOI怎么找? 2555439
邀请新用户注册赠送积分活动 1516729
关于科研通互助平台的介绍 1477281