Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications

支持向量机 燃烧 人工智能 计算机科学 机器学习 聚类分析 化学 有机化学
作者
Sadaf Batool,Jeffrey Naber,Mahdi Shahbakhti
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:144: 105838-105838 被引量:2
标识
DOI:10.1016/j.conengprac.2023.105838
摘要

This paper presents the application of machine learning classification algorithms to identify and classify different heat release rate (HRR) shapes to control the combustion for an optimal multi-mode low-temperature combustion (LTC) engine operation. Low-temperature combustion engine produces low nitrogen oxides (NOx) and soot emissions and offers high thermal efficiency. But high in-cylinder pressure rise rates limit the operating range of the LTC engine. Therefore, it is imperative to control combustion in the LTC engine for safe operation. To this end, the HRR traces for over six hundred engine operating conditions are classified using supervised (i.e., Decision Tree, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM)) and unsupervised (i.e., Kmeans clustering) machine learning approaches to segregate different combustion regimes based on HRR shape. Kmeans clustering was not successful in classifying the HRR shapes. Among different supervised machine learning techniques, SVM has proved to be the best method, having an overall classifier prediction accuracy of 92.4% for identifying the distinct shapes using normalized HRR data. In addition, three classifiers have been trained based on the combustion parameters and control inputs. These classifiers are then used as scheduling variables to develop predictive models. A model predictive control (MPC) framework is developed to control multi-mode LTC engine on cycle-to-cycle basis. The MPC framework achieved the simultaneous reference tracking of combustion phasing (CA50) and indicated mean effective pressure (IMEP) while constraining maximum pressure rise rate (MPRR) below 8 bar/CAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助好好采纳,获得10
1秒前
1秒前
Jenna完成签到,获得积分10
2秒前
呵呜哎辉完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
周小夭发布了新的文献求助10
5秒前
5秒前
酷炫的如风完成签到 ,获得积分10
5秒前
6秒前
默默善愁发布了新的文献求助50
6秒前
朴素的士晋完成签到 ,获得积分10
7秒前
思源应助笔落惊风雨采纳,获得10
7秒前
嘉深完成签到,获得积分10
7秒前
852应助滴滴答答采纳,获得10
8秒前
8秒前
MaSaR完成签到,获得积分10
9秒前
笨笨以莲发布了新的文献求助10
9秒前
honey发布了新的文献求助10
9秒前
chili发布了新的文献求助10
9秒前
Nano发布了新的文献求助10
10秒前
神勇灵竹完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
汉堡包应助SarahChen采纳,获得10
15秒前
15秒前
小马哥发布了新的文献求助10
16秒前
16秒前
WEAWEA发布了新的文献求助10
16秒前
bxdrl完成签到,获得积分20
16秒前
roosterpan发布了新的文献求助10
16秒前
16秒前
南兮完成签到,获得积分10
16秒前
好好完成签到,获得积分20
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233