Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications

支持向量机 燃烧 人工智能 计算机科学 机器学习 聚类分析 化学 有机化学
作者
Sadaf Batool,Jeffrey Naber,Mahdi Shahbakhti
出处
期刊:Control Engineering Practice [Elsevier]
卷期号:144: 105838-105838 被引量:2
标识
DOI:10.1016/j.conengprac.2023.105838
摘要

This paper presents the application of machine learning classification algorithms to identify and classify different heat release rate (HRR) shapes to control the combustion for an optimal multi-mode low-temperature combustion (LTC) engine operation. Low-temperature combustion engine produces low nitrogen oxides (NOx) and soot emissions and offers high thermal efficiency. But high in-cylinder pressure rise rates limit the operating range of the LTC engine. Therefore, it is imperative to control combustion in the LTC engine for safe operation. To this end, the HRR traces for over six hundred engine operating conditions are classified using supervised (i.e., Decision Tree, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM)) and unsupervised (i.e., Kmeans clustering) machine learning approaches to segregate different combustion regimes based on HRR shape. Kmeans clustering was not successful in classifying the HRR shapes. Among different supervised machine learning techniques, SVM has proved to be the best method, having an overall classifier prediction accuracy of 92.4% for identifying the distinct shapes using normalized HRR data. In addition, three classifiers have been trained based on the combustion parameters and control inputs. These classifiers are then used as scheduling variables to develop predictive models. A model predictive control (MPC) framework is developed to control multi-mode LTC engine on cycle-to-cycle basis. The MPC framework achieved the simultaneous reference tracking of combustion phasing (CA50) and indicated mean effective pressure (IMEP) while constraining maximum pressure rise rate (MPRR) below 8 bar/CAD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美丽心情发布了新的文献求助10
1秒前
LK5559完成签到,获得积分10
1秒前
1秒前
2秒前
UnydingZEN完成签到,获得积分10
2秒前
完美世界应助flysky120采纳,获得10
3秒前
4秒前
123完成签到 ,获得积分10
4秒前
CUN完成签到,获得积分10
6秒前
6秒前
xzy998应助帅气不惜采纳,获得10
7秒前
stretchability完成签到,获得积分10
7秒前
7秒前
111发布了新的文献求助10
8秒前
8秒前
LK5559发布了新的文献求助10
8秒前
AsingOne发布了新的文献求助10
9秒前
10秒前
12秒前
xiaofenzi完成签到 ,获得积分10
12秒前
13秒前
坚强水杯发布了新的文献求助10
16秒前
wangwally关注了科研通微信公众号
16秒前
19秒前
AsingOne完成签到,获得积分20
19秒前
七时二十分完成签到,获得积分20
20秒前
mingyahaoa完成签到,获得积分10
26秒前
神奇的海螺完成签到 ,获得积分10
26秒前
乐乐应助科研菜鸟采纳,获得10
28秒前
29秒前
xizhang完成签到 ,获得积分10
29秒前
所所应助七时二十分采纳,获得10
30秒前
Bake完成签到 ,获得积分10
30秒前
内向无春完成签到,获得积分10
30秒前
33秒前
CodeCraft应助刚睡醒采纳,获得10
34秒前
俊逸书琴发布了新的文献求助10
35秒前
35秒前
笃悠悠完成签到,获得积分10
36秒前
虞美人发布了新的文献求助10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560699
求助须知:如何正确求助?哪些是违规求助? 4646016
关于积分的说明 14676918
捐赠科研通 4587117
什么是DOI,文献DOI怎么找? 2516822
邀请新用户注册赠送积分活动 1490308
关于科研通互助平台的介绍 1461136