Machine learning approaches for identification of heat release shapes in a low temperature combustion engine for control applications

支持向量机 燃烧 人工智能 计算机科学 机器学习 聚类分析 化学 有机化学
作者
Sadaf Batool,Jeffrey Naber,Mahdi Shahbakhti
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:144: 105838-105838 被引量:2
标识
DOI:10.1016/j.conengprac.2023.105838
摘要

This paper presents the application of machine learning classification algorithms to identify and classify different heat release rate (HRR) shapes to control the combustion for an optimal multi-mode low-temperature combustion (LTC) engine operation. Low-temperature combustion engine produces low nitrogen oxides (NOx) and soot emissions and offers high thermal efficiency. But high in-cylinder pressure rise rates limit the operating range of the LTC engine. Therefore, it is imperative to control combustion in the LTC engine for safe operation. To this end, the HRR traces for over six hundred engine operating conditions are classified using supervised (i.e., Decision Tree, K-Nearest Neighbors (KNN), and Support Vector Machines (SVM)) and unsupervised (i.e., Kmeans clustering) machine learning approaches to segregate different combustion regimes based on HRR shape. Kmeans clustering was not successful in classifying the HRR shapes. Among different supervised machine learning techniques, SVM has proved to be the best method, having an overall classifier prediction accuracy of 92.4% for identifying the distinct shapes using normalized HRR data. In addition, three classifiers have been trained based on the combustion parameters and control inputs. These classifiers are then used as scheduling variables to develop predictive models. A model predictive control (MPC) framework is developed to control multi-mode LTC engine on cycle-to-cycle basis. The MPC framework achieved the simultaneous reference tracking of combustion phasing (CA50) and indicated mean effective pressure (IMEP) while constraining maximum pressure rise rate (MPRR) below 8 bar/CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助狂野世立采纳,获得10
1秒前
wanci应助仁爱的小懒猪采纳,获得10
2秒前
2秒前
yuaasusanaann发布了新的文献求助10
3秒前
十二应助风味土豆片采纳,获得10
4秒前
5秒前
长岛的雪完成签到,获得积分10
5秒前
6秒前
安静的雨完成签到,获得积分10
6秒前
7秒前
99v587完成签到,获得积分10
8秒前
在水一方应助ZWK采纳,获得10
9秒前
小小旭呀完成签到,获得积分10
9秒前
时光轴发布了新的文献求助10
11秒前
12秒前
13秒前
14秒前
研友_Y59785应助狂野世立采纳,获得10
14秒前
1234完成签到,获得积分10
14秒前
777发布了新的文献求助10
15秒前
丫丫完成签到,获得积分10
15秒前
CipherSage应助998685采纳,获得10
15秒前
学术牛马完成签到,获得积分10
16秒前
丫丫发布了新的文献求助10
18秒前
momo应助1234采纳,获得10
18秒前
19秒前
19秒前
19秒前
20秒前
星辰大海应助任性小丸子采纳,获得10
21秒前
小马甲应助难过的远航采纳,获得10
21秒前
22秒前
稳重傲柔发布了新的文献求助10
23秒前
朴素的天蓝完成签到,获得积分10
23秒前
无心的星月完成签到,获得积分10
23秒前
23秒前
24秒前
998685完成签到,获得积分10
24秒前
Oo发布了新的文献求助50
24秒前
Winfred发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014