超微电极
化学
电极
电化学
分析化学(期刊)
动力学
微尺度化学
循环伏安法
化学物理
化学工程
物理化学
有机化学
物理
数学教育
数学
量子力学
工程类
作者
Mao Du,Lizhu Zhang,Yao Meng,Jiajia Chen,Feng Liu
标识
DOI:10.1021/acs.analchem.3c03462
摘要
Single-entity electrochemistry (SEE) provides powerful means to track a single particle, single cell, and even single molecule from the nano to microscale. The electrode serves as not only the detector of collision but also the surface supplier in SEE, and the fundamental understanding of the electrode surface chemistry on the dynamic particle–electrode interactions and electrochemical responses of a single particle still remains unexplored, particularly for soft particles. Herein, dynamic interactions of microemulsions and the interaction-controlled electron-transfer (ET) kinetics are studied employing SEE and fluorescence spectroscopy. The o/w-type nitrobenzene emulsions were prepared with the surfactant-type room temperature ionic liquids (RTILs). Biased the electrode potential for the reduction of 7,7,8,8-tetracyanoquinodimethane within emulsions, it is surprising to see the distinct collision current signals on the carbon fiber ultramicroelectrode (C UME) and Au ultramicroelectrode (Au UME) in the late stage of chronoamperometric measurements. Theoretical understanding was made to determine the ET kinetics behind the disparate current signals. It is believed that the electrode surface chemistry, i.e., the surface energy, has a great influence on the dynamic emulsion–electrode interactions and ET kinetics. On the hydrophilic surface of Au UME, emulsions tend to decompose/detach from the electrode surface immediately after colliding. In contrast, on the lipophilic surface of C UME with lower surface energy, a layer of oil phase accumulated by the coalescence of emulsions and the migration of the precedent colliding emulsions, which would serve as a barrier to block ET via tunneling as manifested by the gradual slowdown of ET rate and the reduced collision frequency in the late stage of measurement. The impacts of the emulsion size and amphiphilicity of RTILs on the C UME-emulsion interactions and ET kinetics were also investigated.
科研通智能强力驱动
Strongly Powered by AbleSci AI