AutoDDI: Drug–Drug Interaction Prediction With Automated Graph Neural Network

计算机科学 药品 图形 机器学习 人工智能 人工神经网络 药物与药物的相互作用 图论 数据挖掘 理论计算机科学 医学 药理学 数学 组合数学
作者
Jianliang Gao,Zhenpeng Wu,Raeed Al-Sabri,Babatounde Moctard Oloulade,Jiamin Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1773-1784 被引量:4
标识
DOI:10.1109/jbhi.2024.3349570
摘要

Drug–drug interaction (DDI) has attracted widespread attention because when incompatible drugs are taken together, DDI will lead to adverse effects on the body, such as drug poisoning or reduced drug efficacy. The adverse effects of DDI are closely determined by the molecular structures of the drugs involved. To represent drug data effectively, researchers usually treat the molecular structure of drugs as a molecule graph. Then, previous studies can use the handcrafted graph neural network (GNN) model to learn the molecular graph representations of drugs for DDI prediction. However, in the field of bioinformatics, manually designing GNN architectures for specific molecular structure datasets is time-consuming and depends on expert experience. To address this problem, we propose an automatic drug–drug interaction prediction method named AutoDDI that can efficiently and automatically design the GNN architecture for drug–drug interaction prediction without manual intervention. To this end, we first design an effective search space for drug–drug interaction prediction by revisiting various handcrafted GNN architectures. Then, to efficiently and automatically design the optimal GNN architecture for each drug dataset from the search space, a reinforcement learning search algorithm is adopted. The experiment results show that AutoDDI can achieve the best performance on two real-world datasets. Moreover, the visual interpretation results of the case study show that AutoDDI can effectively capture drug substructure for drug–drug interaction prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无畏发布了新的文献求助10
刚刚
1秒前
1秒前
小马科研废物完成签到,获得积分10
2秒前
时尚灵竹发布了新的文献求助10
2秒前
舒心夏山完成签到,获得积分10
2秒前
3秒前
雪白的盼海完成签到,获得积分10
4秒前
4秒前
敢甘完成签到,获得积分10
5秒前
拾新完成签到,获得积分10
5秒前
6秒前
共享精神应助内丹翠采纳,获得10
6秒前
完美世界应助su123采纳,获得10
6秒前
852应助su123采纳,获得10
6秒前
闾丘志泽完成签到,获得积分10
7秒前
fengtj发布了新的文献求助10
7秒前
传奇3应助33333采纳,获得10
8秒前
大个应助lwsxv采纳,获得30
8秒前
chloe发布了新的文献求助10
9秒前
无畏完成签到,获得积分10
9秒前
星星完成签到,获得积分10
9秒前
舒心夏山发布了新的文献求助10
9秒前
加快步伐发布了新的文献求助10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
13秒前
慕青应助偷喝汽水采纳,获得10
15秒前
15秒前
徐小徐完成签到,获得积分10
16秒前
小二郎应助迅速曼冬采纳,获得10
17秒前
cz应助科研通管家采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341