Multi-knowledge enhanced graph convolution for learning resource recommendation

计算机科学 图形 资源(消歧) 卷积(计算机科学) 理论计算机科学 人工智能 计算机网络 人工神经网络
作者
Yao Dong,Yuxi Liu,Yongfeng Dong,Y. Samuel Wang,Min Chen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:291: 111521-111521 被引量:3
标识
DOI:10.1016/j.knosys.2024.111521
摘要

In recent years, E-learning has gained immense popularity as a prominent mode of education. However, accurately recommending learning resources from a vast amount of data remains a significant challenge. This study addresses two primary challenges impacting recommendation performance. Firstly, an imbalance exists between the abundance of available learning resources and the limited interaction behavior of learners. Secondly, the existing algorithms often overlook dynamic preference information, focusing primarily on learners’ short-term, static preferences only by learning interactive behavior but disregarding the multi-correlation between learning resources and learners. To tackle these challenges, we propose MkEGC (Multi-knowledge Enhanced Graph Convolution), a novel framework for learning resource recommendation. We approach the recommendation process as a Markov decision process. Initially, we construct a dual knowledge graph convolutional network, operating in learning resource-knowledge and learner-knowledge domains. This network facilitates the extraction of vector features from learning resources, enhances the learner vector representation, and captures higher-order preferences. Subsequently, we design hierarchical and attention weighting strategies to effectively extract latent hierarchical information from the knowledge graph. Finally, we integrate the learning resource state, the learning interaction state, and the sequence state to represent a multi-dimensional learner-state within the Markov decision framework, enabling prise learning resource recommendations. To validate the effectiveness of MkEGC, we conduct extensive experiments, comparing multiple sets of metrics with six state-of-the-art recommendation algorithms, utilizing two real-world datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雷电将军完成签到,获得积分10
2秒前
2秒前
Percy完成签到,获得积分10
2秒前
3秒前
4秒前
kaikai发布了新的文献求助10
5秒前
5秒前
完美世界应助Tim采纳,获得10
6秒前
6秒前
称心谷南发布了新的文献求助10
7秒前
SIDEsss发布了新的文献求助10
7秒前
科研通AI2S应助雷电将军采纳,获得10
9秒前
Sssmmmyy发布了新的文献求助10
9秒前
10秒前
百发百中发布了新的文献求助10
10秒前
十一发布了新的文献求助10
10秒前
慕青应助MM采纳,获得10
12秒前
14秒前
14秒前
SIDEsss完成签到,获得积分10
15秒前
丹霞发布了新的文献求助10
15秒前
烟花应助YaHe采纳,获得10
16秒前
科研通AI2S应助1eader1采纳,获得10
17秒前
19秒前
huhu发布了新的文献求助30
19秒前
Nerissa完成签到,获得积分10
19秒前
20秒前
22秒前
白紫寒完成签到 ,获得积分10
23秒前
23秒前
英姑应助devin578632采纳,获得10
23秒前
MM发布了新的文献求助10
24秒前
脑洞疼应助自由的枕头采纳,获得10
24秒前
25秒前
吃吃吃发布了新的文献求助10
25秒前
乐观梦芝发布了新的文献求助10
26秒前
后来完成签到,获得积分10
28秒前
28秒前
锦鲤之风发布了新的文献求助100
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738