Toward Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable Attention and Temporal Aggregation

激光雷达 计算机视觉 人工智能 计算机科学 传感器融合 点云 探测器 目标检测 稳健性(进化) 特征提取 遥感 模式识别(心理学) 电信 生物化学 化学 基因 地质学
作者
Jian Wang,Fan Li,Yi An,Xuchong Zhang,Hongbin Sun
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 5753-5764 被引量:52
标识
DOI:10.1109/tcsvt.2024.3366664
摘要

LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the detection performance of fusion models on the clean and well-collected datasets. However, the collected point clouds and images in real scenarios may be corrupted to various degrees due to potential sensor malfunctions, which greatly affects the robustness of the fusion model and poses a threat to safe deployment. In this paper, we first analyze the shortcomings of most fusion detectors, which rely mainly on the LiDAR branch, and the potential of the bird's eye-view (BEV) paradigm in dealing with partial sensor failures. Based on that, we present a robust LiDAR-camera fusion pipeline in unified BEV space with two novel designs under four typical LiDAR-camera malfunction cases. Specifically, a mutual deformable attention is proposed to dynamically model the spatial feature relationship and reduce the interference caused by the corrupted modality, and a temporal aggregation module is devised to fully utilize the rich information in the temporal domain. Together with the decoupled feature extraction for each modality and holistic BEV space fusion, the proposed detector, termed RobBEV, can work stably regardless of single-modality data corruption. Extensive experiments on the large-scale nuScenes dataset under robust settings demonstrate the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
郑昕怡发布了新的文献求助10
1秒前
elena发布了新的文献求助10
1秒前
科研通AI6应助QG采纳,获得10
2秒前
开放的桐发布了新的文献求助10
2秒前
顾北完成签到,获得积分10
3秒前
3秒前
3秒前
哈尼呀发布了新的文献求助10
3秒前
兰兰不懒发布了新的文献求助20
3秒前
木木木又寸完成签到,获得积分10
4秒前
yhcy完成签到,获得积分10
4秒前
4秒前
4秒前
ding应助HAHA采纳,获得10
5秒前
丘比特应助HAHA采纳,获得10
5秒前
CodeCraft应助HAHA采纳,获得10
5秒前
李健应助HAHA采纳,获得20
5秒前
内向的小白菜应助HAHA采纳,获得10
5秒前
斯文败类应助safsafdfasf采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Akim应助坚定剑成采纳,获得10
5秒前
琉璃完成签到,获得积分10
6秒前
钻石好友发布了新的文献求助10
6秒前
6秒前
休亮完成签到,获得积分10
6秒前
LZX发布了新的文献求助10
7秒前
7秒前
小蘑菇应助Qyyy采纳,获得10
7秒前
7秒前
redking发布了新的文献求助10
7秒前
打打应助JINNA采纳,获得10
8秒前
Jared应助辛勤月饼采纳,获得20
8秒前
顾矜应助曾经的小松鼠采纳,获得10
9秒前
科研通AI6应助夏小胖采纳,获得10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
王桐完成签到,获得积分10
10秒前
朽木发布了新的文献求助10
10秒前
山猫完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441