Toward Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable Attention and Temporal Aggregation

激光雷达 计算机视觉 人工智能 计算机科学 传感器融合 点云 探测器 目标检测 稳健性(进化) 特征提取 遥感 模式识别(心理学) 电信 基因 地质学 生物化学 化学
作者
Jian Wang,Fan Li,Yi An,Xuchong Zhang,Hongbin Sun
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 5753-5764 被引量:52
标识
DOI:10.1109/tcsvt.2024.3366664
摘要

LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the detection performance of fusion models on the clean and well-collected datasets. However, the collected point clouds and images in real scenarios may be corrupted to various degrees due to potential sensor malfunctions, which greatly affects the robustness of the fusion model and poses a threat to safe deployment. In this paper, we first analyze the shortcomings of most fusion detectors, which rely mainly on the LiDAR branch, and the potential of the bird's eye-view (BEV) paradigm in dealing with partial sensor failures. Based on that, we present a robust LiDAR-camera fusion pipeline in unified BEV space with two novel designs under four typical LiDAR-camera malfunction cases. Specifically, a mutual deformable attention is proposed to dynamically model the spatial feature relationship and reduce the interference caused by the corrupted modality, and a temporal aggregation module is devised to fully utilize the rich information in the temporal domain. Together with the decoupled feature extraction for each modality and holistic BEV space fusion, the proposed detector, termed RobBEV, can work stably regardless of single-modality data corruption. Extensive experiments on the large-scale nuScenes dataset under robust settings demonstrate the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
林夕完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Zheyuan完成签到,获得积分10
刚刚
六六发布了新的文献求助10
刚刚
橙子发布了新的文献求助10
1秒前
1秒前
小马发布了新的文献求助10
1秒前
Nat完成签到,获得积分20
2秒前
研友_nd7b5L完成签到,获得积分0
2秒前
Mister_CHEN完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
小章发布了新的文献求助30
3秒前
cwq发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
小青发布了新的文献求助10
4秒前
4秒前
顺利含玉发布了新的文献求助10
4秒前
CodeCraft应助壮观砖家采纳,获得10
4秒前
wanci应助张大旺采纳,获得10
5秒前
5秒前
一只眠羊完成签到,获得积分10
5秒前
5秒前
Nat发布了新的文献求助10
5秒前
6秒前
hhh发布了新的文献求助10
6秒前
6秒前
6秒前
Starain完成签到,获得积分10
6秒前
安静契完成签到,获得积分20
7秒前
徐老师完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629758
求助须知:如何正确求助?哪些是违规求助? 4720546
关于积分的说明 14970558
捐赠科研通 4787741
什么是DOI,文献DOI怎么找? 2556498
邀请新用户注册赠送积分活动 1517659
关于科研通互助平台的介绍 1478271