Toward Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable Attention and Temporal Aggregation

激光雷达 计算机视觉 人工智能 计算机科学 传感器融合 点云 探测器 目标检测 稳健性(进化) 特征提取 遥感 模式识别(心理学) 电信 生物化学 化学 基因 地质学
作者
Jian Wang,Fan Li,Yi An,Xuchong Zhang,Hongbin Sun
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 5753-5764 被引量:56
标识
DOI:10.1109/tcsvt.2024.3366664
摘要

LiDAR and camera are two critical sensors that can provide complementary information for accurate 3D object detection. Most works are devoted to improving the detection performance of fusion models on the clean and well-collected datasets. However, the collected point clouds and images in real scenarios may be corrupted to various degrees due to potential sensor malfunctions, which greatly affects the robustness of the fusion model and poses a threat to safe deployment. In this paper, we first analyze the shortcomings of most fusion detectors, which rely mainly on the LiDAR branch, and the potential of the bird's eye-view (BEV) paradigm in dealing with partial sensor failures. Based on that, we present a robust LiDAR-camera fusion pipeline in unified BEV space with two novel designs under four typical LiDAR-camera malfunction cases. Specifically, a mutual deformable attention is proposed to dynamically model the spatial feature relationship and reduce the interference caused by the corrupted modality, and a temporal aggregation module is devised to fully utilize the rich information in the temporal domain. Together with the decoupled feature extraction for each modality and holistic BEV space fusion, the proposed detector, termed RobBEV, can work stably regardless of single-modality data corruption. Extensive experiments on the large-scale nuScenes dataset under robust settings demonstrate the effectiveness of our approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
咕噜发布了新的文献求助10
1秒前
快乐寄风发布了新的文献求助10
2秒前
2秒前
轻松汲完成签到,获得积分20
2秒前
cao发布了新的文献求助10
7秒前
壹号发布了新的文献求助10
8秒前
9秒前
cj完成签到,获得积分10
9秒前
10秒前
Q蒂完成签到 ,获得积分20
11秒前
12秒前
弘毅君发布了新的文献求助30
13秒前
卡戎529发布了新的文献求助10
14秒前
罗又柔应助keke采纳,获得10
14秒前
小蜻蜓发布了新的文献求助10
15秒前
15秒前
15秒前
公西傲蕾发布了新的文献求助10
15秒前
雨伞关注了科研通微信公众号
17秒前
zz完成签到,获得积分20
19秒前
20秒前
打打应助咕噜采纳,获得10
21秒前
zz发布了新的文献求助10
24秒前
25秒前
烂漫的雅容完成签到,获得积分10
27秒前
hahahahaha发布了新的文献求助10
31秒前
CodeCraft应助霸气的思柔采纳,获得10
32秒前
FashionBoy应助zz采纳,获得10
34秒前
changjiaren完成签到,获得积分10
34秒前
36秒前
36秒前
英俊的铭应助alexyusheng采纳,获得10
38秒前
39秒前
40秒前
dlfg完成签到,获得积分10
40秒前
Singularity应助lumengning采纳,获得10
40秒前
40秒前
小小瑾发布了新的文献求助10
42秒前
ZZ发布了新的文献求助10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138641
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791857
捐赠科研通 2445999
什么是DOI,文献DOI怎么找? 1300813
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079