茉莉酸
脱落酸
梨
赤霉素
休眠
生物
转录因子
细胞生物学
葡萄年生长周期
植物
生物化学
水杨酸
基因
发芽
开枪
作者
Xuxu Wang,Jia Wei,Jiahao Wu,Baojing Shi,P. Wang,Ahmed Alabd,Duanni Wang,Yuhao Gao,Junbei Ni,Songling Bai,Yuanwen Teng
标识
DOI:10.1093/plphys/kiad633
摘要
Abstract Bud dormancy is an important physiological process during winter. Its release requires a certain period of chilling. In pear (Pyrus pyrifolia), the abscisic acid (ABA)-induced expression of DORMANCY-ASSOCIATED MADS-box (DAM) genes represses bud break, whereas exogenous gibberellin (GA) promotes dormancy release. However, with the exception of ABA and GA, the regulatory effects of phytohormones on dormancy remain largely uncharacterized. In this study, we confirmed brassinosteroids (BRs) and jasmonic acid (JA) contribute to pear bud dormancy release. If chilling accumulation is insufficient, both 24-epibrassinolide (EBR) and methyl jasmonic acid (MeJA) can promote pear bud break, implying that they positively regulate dormancy release. BRASSINAZOLE RESISTANT 2 (BZR2), which is a BR-responsive transcription factor, inhibited PpyDAM3 expression and accelerated pear bud break. The transient overexpression of PpyBZR2 increased endogenous GA, JA, and JA-Ile levels. In addition, the direct interaction between PpyBZR2 and MYELOCYTOMATOSIS 2 (PpyMYC2) enhanced the PpyMYC2-mediated activation of Gibberellin 20-oxidase genes PpyGA20OX1L1 and PpyGA20OX2L2 transcription, thereby increasing GA3 contents and accelerating pear bud dormancy release. Interestingly, treatment with 5 μm MeJA increased the bud break rate, while also enhancing PpyMYC2-activated PpyGA20OX expression and increasing GA3,4 contents. The 100 μm MeJA treatment decreased the PpyMYC2-mediated activation of the PpyGA20OX1L1 and PpyGA20OX2L2 promoters and suppressed the inhibitory effect of PpyBZR2 on PpyDAM3 transcription, ultimately inhibiting pear bud break. In summary, our data provide insights into the crosstalk between the BR and JA signaling pathways that regulate the BZR2/MYC2-mediated pathway in the pear dormancy release process.
科研通智能强力驱动
Strongly Powered by AbleSci AI