An integrated deep learning approach for assessing the visual qualities of built environments utilizing street view images

计算机科学 感知 深度学习 人工智能 比例(比率) 眼动 机器学习 心理学 地图学 地理 神经科学
作者
Xukai Zhao,Yuxing Lu,Guangsi Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107805-107805 被引量:4
标识
DOI:10.1016/j.engappai.2023.107805
摘要

Investigating residents' visual preferences and perception of built environments is crucial in visual landscape assessment (VLA). While traditional methods face challenges in large-scale applications, the advancement of deep learning techniques and the availability of street view images (SVIs) present new opportunities. However, existing approaches for assessing SVIs' visual qualities are of lower precision, and the link between objective visual elements and subjective perceptions of SVIs remains unclear. In this study, we propose a novel deep learning approach, "SegFormer-B5 + ConvNeXt-B + RF", which achieves an average accuracy of 78.47% in predicting six subjective perceptions (beautiful, boring, depressing, lively, safe, and wealthy) within the Place Pulse 2.0 dataset. This provides an effective tool for assessing citizens' visual perceptions of urban environments. Subsequently, to demonstrate its practical application, we conducted a case study using 36,620 SVIs from the Tianhe District of Guangzhou. Perception maps were constructed based on four objective metrics and six subjective metrics. Results showed a correlation between the spatial distribution of objective visual elements and subjective perceptions, with city centers generally perceived more positively than suburbs. Our application of SHapley Additive exPlanation (SHAP) and Class Activation Map (CAM) visualizations yielded interpretable insights consistent with eye-tracking studies, highlighting human focus on artificial objects, attractive and unattractive elements, and heterogeneous landscapes. It's noteworthy that urban planners and decision-makers in other cities can apply our approach to generate perception maps that identify low-quality areas. SHAP and CAM visualizations further assist in understanding which aspects draw human attention in these areas. This knowledge is crucial for urban designers to implement targeted renewal strategies, ultimately contributing to the creation of sustainable and living-friendly cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liki77完成签到,获得积分10
刚刚
爆米花应助猪猪宝宝采纳,获得10
2秒前
烟花应助鸿鹄采纳,获得10
2秒前
2秒前
2秒前
不空是空发布了新的文献求助300
3秒前
3秒前
wangxiaobin完成签到,获得积分10
4秒前
5秒前
5秒前
刘_Young完成签到,获得积分10
6秒前
曾经的不言完成签到 ,获得积分10
6秒前
常山造纸农完成签到,获得积分10
6秒前
撒旦完成签到,获得积分20
7秒前
cn发布了新的文献求助10
8秒前
9秒前
9秒前
我是老大应助hyx9504采纳,获得10
9秒前
Nari完成签到,获得积分10
10秒前
10秒前
林允儿完成签到,获得积分10
10秒前
curtisness应助研猫采纳,获得10
11秒前
12秒前
猪猪宝宝完成签到,获得积分10
12秒前
13秒前
科研通AI2S应助Lynn采纳,获得10
13秒前
你曾是少年完成签到,获得积分10
13秒前
14秒前
吴栩鹏发布了新的文献求助10
15秒前
情怀应助cn采纳,获得10
15秒前
hyx9504完成签到,获得积分10
16秒前
林允儿发布了新的文献求助10
17秒前
酷波er应助WeiSS采纳,获得10
17秒前
17秒前
英姑应助wbbbb采纳,获得10
18秒前
19秒前
兜兜完成签到 ,获得积分10
19秒前
20秒前
20秒前
Lucas应助感性的又槐采纳,获得10
21秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128973
求助须知:如何正确求助?哪些是违规求助? 2779757
关于积分的说明 7744663
捐赠科研通 2434935
什么是DOI,文献DOI怎么找? 1293790
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530