An integrated deep learning approach for assessing the visual qualities of built environments utilizing street view images

计算机科学 感知 深度学习 人工智能 比例(比率) 眼动 机器学习 心理学 地图学 地理 神经科学
作者
Xukai Zhao,Yuxing Lu,Guangsi Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107805-107805 被引量:31
标识
DOI:10.1016/j.engappai.2023.107805
摘要

Investigating residents' visual preferences and perception of built environments is crucial in visual landscape assessment (VLA). While traditional methods face challenges in large-scale applications, the advancement of deep learning techniques and the availability of street view images (SVIs) present new opportunities. However, existing approaches for assessing SVIs' visual qualities are of lower precision, and the link between objective visual elements and subjective perceptions of SVIs remains unclear. In this study, we propose a novel deep learning approach, "SegFormer-B5 + ConvNeXt-B + RF", which achieves an average accuracy of 78.47% in predicting six subjective perceptions (beautiful, boring, depressing, lively, safe, and wealthy) within the Place Pulse 2.0 dataset. This provides an effective tool for assessing citizens' visual perceptions of urban environments. Subsequently, to demonstrate its practical application, we conducted a case study using 36,620 SVIs from the Tianhe District of Guangzhou. Perception maps were constructed based on four objective metrics and six subjective metrics. Results showed a correlation between the spatial distribution of objective visual elements and subjective perceptions, with city centers generally perceived more positively than suburbs. Our application of SHapley Additive exPlanation (SHAP) and Class Activation Map (CAM) visualizations yielded interpretable insights consistent with eye-tracking studies, highlighting human focus on artificial objects, attractive and unattractive elements, and heterogeneous landscapes. It's noteworthy that urban planners and decision-makers in other cities can apply our approach to generate perception maps that identify low-quality areas. SHAP and CAM visualizations further assist in understanding which aspects draw human attention in these areas. This knowledge is crucial for urban designers to implement targeted renewal strategies, ultimately contributing to the creation of sustainable and living-friendly cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
负责乐安完成签到,获得积分10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
映寒完成签到,获得积分10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
vanilla关注了科研通微信公众号
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得30
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
uiui应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得30
1秒前
1秒前
领导范儿应助科研通管家采纳,获得30
1秒前
lilili应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
2秒前
共享精神应助椰汁采纳,获得10
2秒前
2秒前
2秒前
littlechu发布了新的文献求助30
2秒前
2秒前
plusweng完成签到 ,获得积分10
3秒前
在水一方应助孤岛采纳,获得10
3秒前
zzzzzz完成签到,获得积分10
3秒前
zjdmw完成签到,获得积分10
3秒前
3秒前
3秒前
安沁完成签到,获得积分10
4秒前
4秒前
4秒前
威武的映真完成签到,获得积分10
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647375
求助须知:如何正确求助?哪些是违规求助? 4773416
关于积分的说明 15039107
捐赠科研通 4806115
什么是DOI,文献DOI怎么找? 2570108
邀请新用户注册赠送积分活动 1526968
关于科研通互助平台的介绍 1486055