An integrated deep learning approach for assessing the visual qualities of built environments utilizing street view images

计算机科学 感知 深度学习 人工智能 比例(比率) 眼动 机器学习 心理学 地图学 地理 神经科学
作者
Xukai Zhao,Yuxing Lu,Guangsi Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107805-107805 被引量:31
标识
DOI:10.1016/j.engappai.2023.107805
摘要

Investigating residents' visual preferences and perception of built environments is crucial in visual landscape assessment (VLA). While traditional methods face challenges in large-scale applications, the advancement of deep learning techniques and the availability of street view images (SVIs) present new opportunities. However, existing approaches for assessing SVIs' visual qualities are of lower precision, and the link between objective visual elements and subjective perceptions of SVIs remains unclear. In this study, we propose a novel deep learning approach, "SegFormer-B5 + ConvNeXt-B + RF", which achieves an average accuracy of 78.47% in predicting six subjective perceptions (beautiful, boring, depressing, lively, safe, and wealthy) within the Place Pulse 2.0 dataset. This provides an effective tool for assessing citizens' visual perceptions of urban environments. Subsequently, to demonstrate its practical application, we conducted a case study using 36,620 SVIs from the Tianhe District of Guangzhou. Perception maps were constructed based on four objective metrics and six subjective metrics. Results showed a correlation between the spatial distribution of objective visual elements and subjective perceptions, with city centers generally perceived more positively than suburbs. Our application of SHapley Additive exPlanation (SHAP) and Class Activation Map (CAM) visualizations yielded interpretable insights consistent with eye-tracking studies, highlighting human focus on artificial objects, attractive and unattractive elements, and heterogeneous landscapes. It's noteworthy that urban planners and decision-makers in other cities can apply our approach to generate perception maps that identify low-quality areas. SHAP and CAM visualizations further assist in understanding which aspects draw human attention in these areas. This knowledge is crucial for urban designers to implement targeted renewal strategies, ultimately contributing to the creation of sustainable and living-friendly cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助superluckc采纳,获得10
2秒前
2秒前
飞云之下发布了新的文献求助30
2秒前
斯文败类应助细心的安珊采纳,获得10
2秒前
3秒前
李健的小迷弟应助小螃蟹采纳,获得10
3秒前
他们叫我小伟完成签到 ,获得积分10
4秒前
yv完成签到,获得积分10
5秒前
6秒前
6秒前
飞云之下完成签到,获得积分10
7秒前
王机智发布了新的文献求助10
7秒前
完美世界应助密西西比he采纳,获得10
8秒前
十六日呀发布了新的文献求助10
8秒前
流窜意识完成签到,获得积分10
8秒前
胡梦祥完成签到,获得积分10
8秒前
10秒前
七星茶发布了新的文献求助10
10秒前
123123123完成签到,获得积分10
10秒前
lilianan发布了新的文献求助10
12秒前
13秒前
晴心发布了新的文献求助10
13秒前
爱睡觉的猪完成签到,获得积分20
15秒前
微笑糖豆完成签到 ,获得积分10
15秒前
zzululu2024发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
善学以致用应助季文婷采纳,获得10
20秒前
一颗荔枝完成签到,获得积分10
21秒前
Hello应助晴心采纳,获得10
21秒前
自觉的曼梅完成签到,获得积分20
26秒前
27秒前
密西西比he完成签到,获得积分10
28秒前
王机智完成签到,获得积分10
28秒前
李爱国应助Tigher采纳,获得30
30秒前
30秒前
30秒前
在水一方应助keyantong采纳,获得10
32秒前
愉快的牛氓完成签到 ,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741