已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrated deep learning approach for assessing the visual qualities of built environments utilizing street view images

计算机科学 感知 深度学习 人工智能 比例(比率) 眼动 机器学习 心理学 地图学 地理 神经科学
作者
Xukai Zhao,Yuxing Lu,Guangsi Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:130: 107805-107805 被引量:7
标识
DOI:10.1016/j.engappai.2023.107805
摘要

Investigating residents' visual preferences and perception of built environments is crucial in visual landscape assessment (VLA). While traditional methods face challenges in large-scale applications, the advancement of deep learning techniques and the availability of street view images (SVIs) present new opportunities. However, existing approaches for assessing SVIs' visual qualities are of lower precision, and the link between objective visual elements and subjective perceptions of SVIs remains unclear. In this study, we propose a novel deep learning approach, "SegFormer-B5 + ConvNeXt-B + RF", which achieves an average accuracy of 78.47% in predicting six subjective perceptions (beautiful, boring, depressing, lively, safe, and wealthy) within the Place Pulse 2.0 dataset. This provides an effective tool for assessing citizens' visual perceptions of urban environments. Subsequently, to demonstrate its practical application, we conducted a case study using 36,620 SVIs from the Tianhe District of Guangzhou. Perception maps were constructed based on four objective metrics and six subjective metrics. Results showed a correlation between the spatial distribution of objective visual elements and subjective perceptions, with city centers generally perceived more positively than suburbs. Our application of SHapley Additive exPlanation (SHAP) and Class Activation Map (CAM) visualizations yielded interpretable insights consistent with eye-tracking studies, highlighting human focus on artificial objects, attractive and unattractive elements, and heterogeneous landscapes. It's noteworthy that urban planners and decision-makers in other cities can apply our approach to generate perception maps that identify low-quality areas. SHAP and CAM visualizations further assist in understanding which aspects draw human attention in these areas. This knowledge is crucial for urban designers to implement targeted renewal strategies, ultimately contributing to the creation of sustainable and living-friendly cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二小完成签到 ,获得积分10
刚刚
x111发布了新的文献求助10
1秒前
赵乂发布了新的文献求助10
1秒前
噔噔蹬完成签到 ,获得积分10
2秒前
友好的半仙完成签到,获得积分10
5秒前
大模型应助B站萧亚轩采纳,获得10
6秒前
jhxie完成签到,获得积分10
6秒前
6秒前
WXX完成签到,获得积分20
8秒前
自然的听云完成签到,获得积分10
9秒前
cureall应助某慧采纳,获得20
9秒前
尼龙niuniu完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助11采纳,获得10
12秒前
Akihi发布了新的文献求助10
12秒前
浩淼发布了新的文献求助10
13秒前
shinysparrow应助个性宝马采纳,获得200
13秒前
尼龙niuniu发布了新的文献求助10
13秒前
orixero应助WXX采纳,获得10
15秒前
cherish发布了新的文献求助10
17秒前
ding应助笨笨善若采纳,获得30
17秒前
Akihi完成签到,获得积分10
17秒前
leibaozun完成签到 ,获得积分10
22秒前
逝水无痕发布了新的文献求助10
25秒前
Rondab应助尼龙niuniu采纳,获得10
27秒前
量子星尘发布了新的文献求助10
30秒前
30秒前
桐桐应助雪松采纳,获得10
30秒前
yydragen应助茂飞采纳,获得50
32秒前
lxy发布了新的文献求助10
32秒前
yydragen应助哈哈采纳,获得10
32秒前
姜饼发布了新的文献求助10
33秒前
FashionBoy应助袁宁宁静采纳,获得10
33秒前
34秒前
34秒前
35秒前
35秒前
共享精神应助B站萧亚轩采纳,获得10
35秒前
36秒前
阿莫仙完成签到,获得积分10
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021