已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrated deep learning approach for assessing the visual qualities of built environments utilizing street view images

计算机科学 感知 深度学习 人工智能 比例(比率) 眼动 机器学习 心理学 地图学 地理 神经科学
作者
Xukai Zhao,Yuxing Lu,Guangsi Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107805-107805 被引量:31
标识
DOI:10.1016/j.engappai.2023.107805
摘要

Investigating residents' visual preferences and perception of built environments is crucial in visual landscape assessment (VLA). While traditional methods face challenges in large-scale applications, the advancement of deep learning techniques and the availability of street view images (SVIs) present new opportunities. However, existing approaches for assessing SVIs' visual qualities are of lower precision, and the link between objective visual elements and subjective perceptions of SVIs remains unclear. In this study, we propose a novel deep learning approach, "SegFormer-B5 + ConvNeXt-B + RF", which achieves an average accuracy of 78.47% in predicting six subjective perceptions (beautiful, boring, depressing, lively, safe, and wealthy) within the Place Pulse 2.0 dataset. This provides an effective tool for assessing citizens' visual perceptions of urban environments. Subsequently, to demonstrate its practical application, we conducted a case study using 36,620 SVIs from the Tianhe District of Guangzhou. Perception maps were constructed based on four objective metrics and six subjective metrics. Results showed a correlation between the spatial distribution of objective visual elements and subjective perceptions, with city centers generally perceived more positively than suburbs. Our application of SHapley Additive exPlanation (SHAP) and Class Activation Map (CAM) visualizations yielded interpretable insights consistent with eye-tracking studies, highlighting human focus on artificial objects, attractive and unattractive elements, and heterogeneous landscapes. It's noteworthy that urban planners and decision-makers in other cities can apply our approach to generate perception maps that identify low-quality areas. SHAP and CAM visualizations further assist in understanding which aspects draw human attention in these areas. This knowledge is crucial for urban designers to implement targeted renewal strategies, ultimately contributing to the creation of sustainable and living-friendly cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
lj发布了新的文献求助30
1秒前
王xingxing完成签到 ,获得积分10
1秒前
顾矜应助Donger采纳,获得10
1秒前
明朗完成签到 ,获得积分20
2秒前
灵巧的导师完成签到,获得积分10
3秒前
3秒前
领导范儿应助啊哈哈哈采纳,获得30
4秒前
Chaos完成签到 ,获得积分10
4秒前
鹤昀完成签到 ,获得积分10
4秒前
4秒前
慕鳞发布了新的文献求助30
5秒前
桐桐应助雪白巨人采纳,获得10
5秒前
鞑靼完成签到 ,获得积分10
5秒前
marco完成签到 ,获得积分10
5秒前
贪玩梦山发布了新的文献求助30
6秒前
好香芋泥煎意面完成签到,获得积分10
8秒前
羊羊完成签到,获得积分10
8秒前
impending完成签到,获得积分10
8秒前
qaxt完成签到,获得积分10
8秒前
9秒前
昌莆完成签到 ,获得积分10
9秒前
lj完成签到,获得积分10
9秒前
热心青易完成签到 ,获得积分10
9秒前
哈哈完成签到 ,获得积分10
9秒前
一溪风月发布了新的文献求助10
10秒前
小树苗完成签到,获得积分10
10秒前
10秒前
11秒前
稳重的以珊完成签到 ,获得积分10
11秒前
TTYYI完成签到 ,获得积分10
11秒前
Xiong发布了新的文献求助30
11秒前
成就的笑南完成签到 ,获得积分10
12秒前
毛头完成签到,获得积分10
12秒前
Orange应助慕鳞采纳,获得10
13秒前
无限芝麻完成签到,获得积分20
13秒前
赧赧完成签到 ,获得积分10
13秒前
Donger发布了新的文献求助10
14秒前
结实乐荷发布了新的文献求助10
14秒前
清秀芝麻完成签到 ,获得积分10
15秒前
研友_n0QYAZ完成签到 ,获得积分10
15秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502327
求助须知:如何正确求助?哪些是违规求助? 4598289
关于积分的说明 14463432
捐赠科研通 4531834
什么是DOI,文献DOI怎么找? 2483661
邀请新用户注册赠送积分活动 1466923
关于科研通互助平台的介绍 1439539

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10