An integrated deep learning approach for assessing the visual qualities of built environments utilizing street view images

计算机科学 感知 深度学习 人工智能 比例(比率) 眼动 机器学习 心理学 地图学 地理 神经科学
作者
Xukai Zhao,Yuxing Lu,Guangsi Lin
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:130: 107805-107805 被引量:31
标识
DOI:10.1016/j.engappai.2023.107805
摘要

Investigating residents' visual preferences and perception of built environments is crucial in visual landscape assessment (VLA). While traditional methods face challenges in large-scale applications, the advancement of deep learning techniques and the availability of street view images (SVIs) present new opportunities. However, existing approaches for assessing SVIs' visual qualities are of lower precision, and the link between objective visual elements and subjective perceptions of SVIs remains unclear. In this study, we propose a novel deep learning approach, "SegFormer-B5 + ConvNeXt-B + RF", which achieves an average accuracy of 78.47% in predicting six subjective perceptions (beautiful, boring, depressing, lively, safe, and wealthy) within the Place Pulse 2.0 dataset. This provides an effective tool for assessing citizens' visual perceptions of urban environments. Subsequently, to demonstrate its practical application, we conducted a case study using 36,620 SVIs from the Tianhe District of Guangzhou. Perception maps were constructed based on four objective metrics and six subjective metrics. Results showed a correlation between the spatial distribution of objective visual elements and subjective perceptions, with city centers generally perceived more positively than suburbs. Our application of SHapley Additive exPlanation (SHAP) and Class Activation Map (CAM) visualizations yielded interpretable insights consistent with eye-tracking studies, highlighting human focus on artificial objects, attractive and unattractive elements, and heterogeneous landscapes. It's noteworthy that urban planners and decision-makers in other cities can apply our approach to generate perception maps that identify low-quality areas. SHAP and CAM visualizations further assist in understanding which aspects draw human attention in these areas. This knowledge is crucial for urban designers to implement targeted renewal strategies, ultimately contributing to the creation of sustainable and living-friendly cities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒服的从阳完成签到 ,获得积分10
1秒前
1秒前
1秒前
1秒前
开心渣渣发布了新的文献求助10
2秒前
无情南琴发布了新的文献求助10
2秒前
2秒前
kaida完成签到,获得积分10
2秒前
yyy发布了新的文献求助30
3秒前
3秒前
量子星尘发布了新的文献求助20
3秒前
4秒前
WSH应助duoduoduo采纳,获得10
4秒前
Summer夏天完成签到,获得积分10
4秒前
隐形曼青应助非理性人群采纳,获得10
4秒前
cherish完成签到,获得积分10
5秒前
lym完成签到,获得积分10
5秒前
专一的小馒头完成签到,获得积分10
5秒前
Aile。发布了新的文献求助10
5秒前
WUHUDASM发布了新的文献求助10
5秒前
5秒前
汉堡包应助早日毕业采纳,获得10
6秒前
英姑应助隐形宛白采纳,获得10
6秒前
6秒前
单纯的晓刚完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
蔡继海发布了新的文献求助10
7秒前
裴荣华完成签到,获得积分10
7秒前
玺白白发布了新的文献求助50
7秒前
yoyo20012623完成签到,获得积分10
8秒前
跃天杜发布了新的文献求助10
8秒前
8秒前
煎饼煎饼发布了新的文献求助10
9秒前
9秒前
9秒前
ximi发布了新的文献求助20
9秒前
刮刮粉儿完成签到,获得积分10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581495
求助须知:如何正确求助?哪些是违规求助? 4665821
关于积分的说明 14758879
捐赠科研通 4607710
什么是DOI,文献DOI怎么找? 2528346
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466507