BWave framework for coverage path planning in complex environment with energy constraint

计算机科学 约束(计算机辅助设计) 运动规划 路径(计算) 能量(信号处理) 数学优化 运筹学 人工智能 数学 机器人 计算机网络 统计 几何学
作者
Tran Thi Cam Giang,Dao Lam,Huỳnh Thị Thanh Bình,Thi Ha Ly Dinh,Quoc Huy
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123277-123277
标识
DOI:10.1016/j.eswa.2024.123277
摘要

As one of fundamental problems in robotics, coverage path planning (CPP) requires the robot path to cover the entire workspace which has been employed in several essential applications such as cleaning robots, land mine detector, lawnmowers and automated harvesters. Unlike most of existing studies considering the CPP problem under a unrealistic assumption of infinity energy, this paper takes the battery limitation of robots into account. This poses a significant challenge for enabling an efficient coverage path while satisfying the limited energy constraint, even in a priori known environment. Handling this challenge, we propose a BWave Framework that guides the robot to move following an improved Boustrophedon-like motion and a special area prioritization and especially, to return a charging station effectively before an exhausted energy. To that end, a weighted map is applied for recognizing the special areas, namely trap regions, and governing the robot to enter these fields in priority. Moreover, a return matrix, which forms the shortest-path tree from the charging station, is pre-computed to not only validate the energy requirement, but also speed up the calculation process of return and advance paths during the robot’s operation. We then evaluate BWave Framework extensively in various scenarios in both generated and real-life indoor maps datasets. The results show that compared to typical baseline methods, BWave Framework achieves the CPP solution at a significantly accelerated running time, namely 51.5 to 72.8 times lower for generated maps, and 44.8 to 255 times for real maps, while reducing the total path length by 2.4%–17.6% and by 2.9%–18.5%, respectively. Moreover, the proposed method also outperforms the baselines in terms of overlap rate, number of returns and accounts for a lower number of deadlocks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taoyiyan发布了新的文献求助10
刚刚
无名氏完成签到,获得积分10
1秒前
CipherSage应助lyb采纳,获得10
1秒前
1秒前
1秒前
UY完成签到,获得积分20
1秒前
喜悦的一手完成签到,获得积分10
1秒前
孤巷的猫发布了新的文献求助10
3秒前
taoyiyan完成签到,获得积分10
4秒前
5秒前
想飞的猪发布了新的文献求助10
5秒前
5秒前
可靠从云发布了新的文献求助10
5秒前
5秒前
NCS完成签到,获得积分10
6秒前
李瞻完成签到,获得积分10
6秒前
思源应助erhan7采纳,获得10
7秒前
共享精神应助古丹娜采纳,获得10
8秒前
白日焰火发布了新的文献求助10
9秒前
李飘飘发布了新的文献求助10
9秒前
Li发布了新的文献求助10
9秒前
充电宝应助深蓝采纳,获得10
9秒前
荔枝吖完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
852应助喏晨采纳,获得10
10秒前
11秒前
yibo完成签到,获得积分20
11秒前
STEPHANIE完成签到,获得积分10
11秒前
dd完成签到,获得积分20
11秒前
12秒前
藏锋守拙123完成签到,获得积分10
12秒前
陈花蕾发布了新的文献求助10
12秒前
14秒前
科研通AI6应助清子采纳,获得10
14秒前
qian完成签到 ,获得积分10
15秒前
完美世界应助最好的我们采纳,获得10
15秒前
15秒前
16秒前
bkagyin应助可耐的从安采纳,获得10
17秒前
丘比特应助halo采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469155
求助须知:如何正确求助?哪些是违规求助? 4572311
关于积分的说明 14335054
捐赠科研通 4499131
什么是DOI,文献DOI怎么找? 2464938
邀请新用户注册赠送积分活动 1453493
关于科研通互助平台的介绍 1428006