Treatment Response Prediction in Major Depressive Disorder Using Multimodal MRI and Clinical Data: Secondary Analysis of a Randomized Clinical Trial

舍曲林 安慰剂 随机对照试验 重性抑郁障碍 抗抑郁药 接收机工作特性 神经影像学 医学 临床试验 心理学 精神科 内科学 病理 替代医学 扁桃形结构 海马体
作者
Maarten G. Poirot,Henricus G. Ruhé,Henk J. M. M. Mutsaerts,Ivan I. Maximov,Inge Rasmus Groote,Atle Bjørnerud,Henk A. Marquering,Liesbeth Reneman,Matthan W.A. Caan
出处
期刊:American Journal of Psychiatry [American Psychiatric Association Publishing]
卷期号:181 (3): 223-233 被引量:7
标识
DOI:10.1176/appi.ajp.20230206
摘要

Objective: Response to antidepressant treatment in major depressive disorder varies substantially between individuals, which lengthens the process of finding effective treatment. The authors sought to determine whether a multimodal machine learning approach could predict early sertraline response in patients with major depressive disorder. They assessed the predictive contribution of MR neuroimaging and clinical assessments at baseline and after 1 week of treatment. Methods: This was a preregistered secondary analysis of data from the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, a multisite double-blind, placebo-controlled randomized clinical trial that included 296 adult outpatients with unmedicated recurrent or chronic major depressive disorder. MR neuroimaging and clinical data were collected before and after 1 week of treatment. Performance in predicting response and remission, collected after 8 weeks, was quantified using balanced accuracy (bAcc) and area under the receiver operating characteristic curve (AUROC) scores. Results: A total of 229 patients were included in the analyses (mean age, 38 years [SD=13]; 66% female). Internal cross-validation performance in predicting response to sertraline (bAcc=68% [SD=10], AUROC=0.73 [SD=0.03]) was significantly better than chance. External cross-validation on data from placebo nonresponders (bAcc=62%, AUROC=0.66) and placebo nonresponders who were switched to sertraline (bAcc=65%, AUROC=0.68) resulted in differences that suggest specificity for sertraline treatment compared with placebo treatment. Finally, multimodal models outperformed unimodal models. Conclusions: The study results confirm that early sertraline treatment response can be predicted; that the models are sertraline specific compared with placebo; that prediction benefits from integrating multimodal MRI data with clinical data; and that perfusion imaging contributes most to these predictions. Using this approach, a lean and effective protocol could individualize sertraline treatment planning to improve psychiatric care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huazhangchina发布了新的文献求助30
1秒前
1秒前
2秒前
传奇3应助kkkl采纳,获得10
2秒前
2秒前
2秒前
五十一笑声应助斩封采纳,获得100
3秒前
小莹完成签到,获得积分10
3秒前
儒雅奇男子完成签到 ,获得积分10
3秒前
齐桓完成签到,获得积分10
3秒前
Miller应助俏皮的以晴采纳,获得20
4秒前
Loscin完成签到,获得积分10
4秒前
4秒前
白七为皂关注了科研通微信公众号
4秒前
哭泣的冬易完成签到,获得积分10
5秒前
张聪发布了新的文献求助10
5秒前
科研通AI2S应助JxJ采纳,获得10
5秒前
xxm发布了新的文献求助10
5秒前
6秒前
saluo完成签到 ,获得积分10
6秒前
7秒前
杨森omg完成签到,获得积分10
7秒前
脑洞疼应助moonlight采纳,获得10
7秒前
西岭发布了新的文献求助10
8秒前
李健的小迷弟应助jwj采纳,获得10
8秒前
Delia完成签到,获得积分10
8秒前
会飞的猪发布了新的文献求助10
8秒前
丘比特应助why采纳,获得10
8秒前
en发布了新的文献求助10
9秒前
夏晴发布了新的文献求助10
9秒前
爆改shoot完成签到,获得积分10
9秒前
...发布了新的文献求助10
9秒前
迫切发布了新的文献求助10
10秒前
Delia发布了新的文献求助10
10秒前
10秒前
bu完成签到,获得积分10
11秒前
一诺千金的爹完成签到,获得积分20
11秒前
12秒前
雾非雾发布了新的文献求助30
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663