Predicting Hematoma Expansion and Prognosis in Cerebral Contusions: A Radiomics-Clinical Approach

格拉斯哥昏迷指数 血肿 列线图 医学 格拉斯哥结局量表 接收机工作特性 逻辑回归 中线偏移 放射科 外科 内科学
作者
Haoyue He,Jinxin Liu,Chuanming Li,Yi Guo,Kaixin Liang,Jun Du,Jun Xue,Yidan Liang,Peng Chen,Liu Liu,Min Cui,Jia Wang,Ye Liu,Shanshan Tian,Yongbing Deng
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert]
被引量:5
标识
DOI:10.1089/neu.2023.0410
摘要

Hemorrhagic progression of contusion (HPC) often occurs early in cerebral contusions (CC) patients, significantly impacting their prognosis. It is vital to promptly assess HPC and predict outcomes for effective tailored interventions, thereby enhancing prognosis in CC patients. We utilized the Attention-3DUNet neural network to semi-automatically segment hematomas from computed tomography (CT) images of 452 CC patients, incorporating 695 hematomas. Subsequently, 1502 radiomic features were extracted from 358 hematomas in 261 patients. After a selection process, these features were used to calculate the radiomic signature (Radscore). The Radscore, along with clinical features such as medical history, physical examinations, laboratory results, and radiological findings, was employed to develop predictive models. For prognosis (discharge Glasgow Outcome Scale score), radiomic features of each hematoma were augmented and fused for correlation. We employed various machine learning methodologies to create both a combined model, integrating radiomics and clinical features, and a clinical-only model. Nomograms based on logistic regression were constructed to visually represent the predictive procedure, and external validation was performed on 170 patients from three additional centers. The results showed that for HPC, the combined model, incorporating hemoglobin levels, Rotterdam CT score of 3, multi-hematoma fuzzy sign, concurrent subdural hemorrhage, international normalized ratio, and Radscore, achieved area under the receiver operating characteristic curve (AUC) values of 0.848 and 0.836 in the test and external validation cohorts, respectively. The clinical model predicting prognosis, utilizing age, Abbreviated Injury Scale for the head, Glasgow Coma Scale Motor component, Glasgow Coma Scale Verbal component, albumin, and Radscore, attained AUC values of 0.846 and 0.803 in the test and external validation cohorts, respectively. Selected radiomic features indicated that irregularly shaped and highly heterogeneous hematomas increased the likelihood of HPC, while larger weighted axial lengths and lower densities of hematomas were associated with a higher risk of poor prognosis. Predictive models that combine radiomic and clinical features exhibit robust performance in forecasting HPC and the risk of poor prognosis in CC patients. Radiomic features complement clinical features in predicting HPC, although their ability to enhance the predictive accuracy of the clinical model for adverse prognosis is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顾夏包完成签到,获得积分10
1秒前
小土豆发布了新的文献求助50
2秒前
科研通AI5应助跑在颖采纳,获得10
2秒前
追寻代真发布了新的文献求助10
3秒前
mrmrer完成签到,获得积分20
3秒前
3秒前
3秒前
毛慢慢发布了新的文献求助10
4秒前
4秒前
今天不学习明天变垃圾完成签到,获得积分10
4秒前
5秒前
5秒前
布布完成签到,获得积分10
6秒前
一独白发布了新的文献求助10
6秒前
周周完成签到 ,获得积分10
6秒前
淡然完成签到,获得积分10
7秒前
明理小土豆完成签到,获得积分10
7秒前
刘国建郭菱香完成签到,获得积分10
7秒前
嘤嘤嘤完成签到,获得积分10
7秒前
九川应助粱自中采纳,获得10
7秒前
无辜之卉完成签到,获得积分10
8秒前
无花果应助Island采纳,获得10
8秒前
8秒前
SHDeathlock发布了新的文献求助200
9秒前
Owen应助醒醒采纳,获得10
9秒前
无心的代桃完成签到,获得积分10
10秒前
追寻代真完成签到,获得积分10
10秒前
晓兴兴完成签到,获得积分10
10秒前
leon发布了新的文献求助10
11秒前
洽洽瓜子shine完成签到,获得积分10
11秒前
简单的大白菜真实的钥匙完成签到,获得积分10
12秒前
13秒前
一独白完成签到,获得积分10
14秒前
在水一方应助坚强的樱采纳,获得10
14秒前
慕青应助尼亚吉拉采纳,获得10
15秒前
快乐小白菜应助甜酱采纳,获得10
15秒前
15秒前
qq应助毛慢慢采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762