Predicting Hematoma Expansion and Prognosis in Cerebral Contusions: A Radiomics-Clinical Approach

格拉斯哥昏迷指数 血肿 列线图 医学 格拉斯哥结局量表 接收机工作特性 逻辑回归 中线偏移 放射科 外科 内科学
作者
Haoyue He,Jinxin Liu,Chuanming Li,Yi Guo,Kaixin Liang,Jun Du,Jun Xue,Yidan Liang,Peng Chen,Liu Liu,Min Cui,Jia Wang,Ye Liu,Shanshan Tian,Yongbing Deng
出处
期刊:Journal of Neurotrauma [Mary Ann Liebert]
卷期号:41 (11-12): 1337-1352 被引量:15
标识
DOI:10.1089/neu.2023.0410
摘要

Hemorrhagic progression of contusion (HPC) often occurs early in cerebral contusions (CC) patients, significantly impacting their prognosis. It is vital to promptly assess HPC and predict outcomes for effective tailored interventions, thereby enhancing prognosis in CC patients. We utilized the Attention-3DUNet neural network to semi-automatically segment hematomas from computed tomography (CT) images of 452 CC patients, incorporating 695 hematomas. Subsequently, 1502 radiomic features were extracted from 358 hematomas in 261 patients. After a selection process, these features were used to calculate the radiomic signature (Radscore). The Radscore, along with clinical features such as medical history, physical examinations, laboratory results, and radiological findings, was employed to develop predictive models. For prognosis (discharge Glasgow Outcome Scale score), radiomic features of each hematoma were augmented and fused for correlation. We employed various machine learning methodologies to create both a combined model, integrating radiomics and clinical features, and a clinical-only model. Nomograms based on logistic regression were constructed to visually represent the predictive procedure, and external validation was performed on 170 patients from three additional centers. The results showed that for HPC, the combined model, incorporating hemoglobin levels, Rotterdam CT score of 3, multi-hematoma fuzzy sign, concurrent subdural hemorrhage, international normalized ratio, and Radscore, achieved area under the receiver operating characteristic curve (AUC) values of 0.848 and 0.836 in the test and external validation cohorts, respectively. The clinical model predicting prognosis, utilizing age, Abbreviated Injury Scale for the head, Glasgow Coma Scale Motor component, Glasgow Coma Scale Verbal component, albumin, and Radscore, attained AUC values of 0.846 and 0.803 in the test and external validation cohorts, respectively. Selected radiomic features indicated that irregularly shaped and highly heterogeneous hematomas increased the likelihood of HPC, while larger weighted axial lengths and lower densities of hematomas were associated with a higher risk of poor prognosis. Predictive models that combine radiomic and clinical features exhibit robust performance in forecasting HPC and the risk of poor prognosis in CC patients. Radiomic features complement clinical features in predicting HPC, although their ability to enhance the predictive accuracy of the clinical model for adverse prognosis is limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助一击必中采纳,获得10
刚刚
lwq发布了新的文献求助10
刚刚
1秒前
科研通AI6应助那新采纳,获得30
1秒前
小橘子发布了新的文献求助10
1秒前
研友_Lpawrn完成签到,获得积分10
1秒前
2秒前
Zhixiang发布了新的文献求助10
2秒前
MS903发布了新的文献求助10
2秒前
2秒前
DRXXX完成签到 ,获得积分10
2秒前
3秒前
情怀应助Antonio采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
张文静发布了新的文献求助10
4秒前
TJH完成签到,获得积分10
4秒前
4秒前
研友_ZzrWKZ发布了新的文献求助10
4秒前
5秒前
5秒前
nothing完成签到 ,获得积分10
6秒前
nianlu完成签到,获得积分10
6秒前
liuuuuuu完成签到 ,获得积分10
6秒前
linxi发布了新的文献求助10
6秒前
Akim应助瘦瘦的百褶裙采纳,获得10
6秒前
麦田里的守望者完成签到,获得积分10
6秒前
Wait发布了新的文献求助10
7秒前
lalala应助少艾采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
8秒前
herococa应助迷路的指甲油采纳,获得10
8秒前
8秒前
8秒前
禾唔昂黄完成签到,获得积分10
8秒前
豆豆突发布了新的文献求助10
8秒前
小芒完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659360
求助须知:如何正确求助?哪些是违规求助? 4828643
关于积分的说明 15086659
捐赠科研通 4818058
什么是DOI,文献DOI怎么找? 2578481
邀请新用户注册赠送积分活动 1533096
关于科研通互助平台的介绍 1491770