毛细管电色谱
化学
对映体
色谱法
安培法
对映选择合成
理论版
电色谱法
检出限
纳米材料
选择性
对映体过量
分析化学(期刊)
毛细管电泳
纳米技术
有机化学
材料科学
物理化学
催化作用
电化学
电极
作者
Li Yang,Ru Liu,Chaodan Li,Boning Gu,Jiannong Ye,Li Chen,Qingcui Chu
标识
DOI:10.1016/j.aca.2024.342242
摘要
With the rapid growth of the demand for optically pure compounds in the fields of biology, medicine and stereospecific synthesis, it is of great importance to develop efficient, economical, simple enantioseparation and analysis methods. Open tubular capillary electrochromatography (OT-CEC) has attracted much attention in the field of chiral separation, but its column capacity and the sensitivity of common-used optical detection are relatively low. Zeolite beta nanomaterial is both enantioselective and size-selective, providing suitable chiral microenvironment for chiral recognition, and amperometric detection (AD) avoids the low sensitivity caused by the short optical path in optical detection to some extent. Zeolite beta nanomaterials with different particle sizes (25, 50 and 200 nm) were synthesized, and the morphology and structure were characterized by scanning electron microscopy and X-ray diffraction. Then, a novel chiral OT column was prepared by one-step method using zeolite beta nanomaterial as chiral stationary phase, and its separation performance was characterized by miniaturized CEC with AD (mini-CEC-AD) device. Under the optimum conditions, six groups of chiral drugs achieved baseline separation. Norepinephrine enantiomers were used for evaluating the inter-day, intra-day and inter-column reproducibility of the prepared open-tubular column. The relative standard deviations of migration time, peak area, resolution and selectivity factor were within 8.7 %. The limits of detection for norepinephrine enantiomers were 0.18 μg mL−1 (S/N = 3), and the average recoveries were in range of 96.7–105.0 %. This developed method has been successfully applied to the analysis of impurity enantiomer in potassium dichromate (+)-norepinephrine injection sample. Zeolite beta nanomaterial was used as the stationary phase to prepare chiral OT columns for the first time, and this one-step preparation method is simple and easy. The introduction of zeolite beta enriches the types of chiral stationary phase materials in electrochromatographic columns, and mini-OT-CEC-AD system provides an alternative for fast enantioseparation of chiral compounds.
科研通智能强力驱动
Strongly Powered by AbleSci AI