The interpretable machine learning model associated with metal mixtures to identify hypertension via EMR mining method

医学 人工智能 算法 冶金 计算机科学 化学 无机化学 材料科学
作者
Site Xu,Mu Sun
标识
DOI:10.1111/jch.14768
摘要

There are limited data available regarding the connection between hypertension and heavy metal exposure. The authors intend to establish an interpretable machine learning (ML) model with high efficiency and robustness that identifies hypertension based on heavy metal exposure. Our datasets were obtained from the US National Health and Nutrition Examination Survey (NHANES, 2013-2020.3). The authors developed 5 ML models for hypertension identification by heavy metal exposure, and tested them by 10 discrimination characteristics. Further, the authors chose the optimally performing model after parameter adjustment by Genetic Algorithm (GA) for identification. Finally, in order to visualize the model's ability to make decisions, the authors used SHapley Additive exPlanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) algorithm to illustrate the features. The study included 19 368 participants in total. A best-performing eXtreme Gradient Boosting (XGB) with GA for hypertension identification by 16 heavy metals was selected (AUC: 0.774; 95% CI: 0.772-0.776; accuracy: 87.7%). According to SHAP values, Barium (0.02), Cadmium (0.017), Lead (0.017), Antimony (0.008), Tin (0.007), Manganese (0.006), Thallium (0.004), Tungsten (0.004) in urine, and Lead (0.048), Mercury (0.035), Selenium (0.05), Manganese (0.007) in blood positively influenced the model, while Cadmium (-0.001) in urine negatively influenced the model. Study participants' hypertension associated with heavy metal exposure was identified by an efficient, robust, and interpretable GA-XGB model with SHAP and LIME. Barium, Cadmium, Lead, Antimony, Tin, Manganese, Thallium, Tungsten in urine, and Lead, Mercury, Selenium, Manganese in blood are positively correlated with hypertension, while Cadmium in blood is negatively correlated with hypertension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Otorhino完成签到 ,获得积分10
1秒前
科研悍匪关注了科研通微信公众号
1秒前
研友_VZG7GZ应助辰翼采纳,获得10
2秒前
爆米花应助是问采纳,获得10
3秒前
4秒前
wanci应助砍柴少年采纳,获得10
5秒前
7秒前
9秒前
煜晟发布了新的文献求助10
11秒前
wcx完成签到,获得积分10
11秒前
qian72133完成签到,获得积分10
14秒前
汉堡包应助liuzf采纳,获得10
14秒前
16秒前
16秒前
任性蘑菇完成签到 ,获得积分10
17秒前
烟雨平生应助顺利臻采纳,获得10
17秒前
劲秉应助小何采纳,获得10
18秒前
candy完成签到,获得积分20
18秒前
DrD完成签到,获得积分10
19秒前
20秒前
20秒前
河鲸发布了新的文献求助10
20秒前
星辰大海应助科研通管家采纳,获得10
22秒前
mhl11应助科研通管家采纳,获得20
22秒前
领导范儿应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
22秒前
劲秉应助科研通管家采纳,获得20
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得30
23秒前
23秒前
23秒前
23秒前
唠叨的凌雪完成签到,获得积分10
23秒前
violetlishu完成签到 ,获得积分10
24秒前
毅力鸟完成签到,获得积分10
24秒前
26秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270064
求助须知:如何正确求助?哪些是违规求助? 2909706
关于积分的说明 8350134
捐赠科研通 2580000
什么是DOI,文献DOI怎么找? 1403124
科研通“疑难数据库(出版商)”最低求助积分说明 655649
邀请新用户注册赠送积分活动 635032