The interpretable machine learning model associated with metal mixtures to identify hypertension via EMR mining method

医学 人工智能 算法 冶金 计算机科学 化学 无机化学 材料科学
作者
Site Xu,Mu Sun
标识
DOI:10.1111/jch.14768
摘要

There are limited data available regarding the connection between hypertension and heavy metal exposure. The authors intend to establish an interpretable machine learning (ML) model with high efficiency and robustness that identifies hypertension based on heavy metal exposure. Our datasets were obtained from the US National Health and Nutrition Examination Survey (NHANES, 2013-2020.3). The authors developed 5 ML models for hypertension identification by heavy metal exposure, and tested them by 10 discrimination characteristics. Further, the authors chose the optimally performing model after parameter adjustment by Genetic Algorithm (GA) for identification. Finally, in order to visualize the model's ability to make decisions, the authors used SHapley Additive exPlanation (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME) algorithm to illustrate the features. The study included 19 368 participants in total. A best-performing eXtreme Gradient Boosting (XGB) with GA for hypertension identification by 16 heavy metals was selected (AUC: 0.774; 95% CI: 0.772-0.776; accuracy: 87.7%). According to SHAP values, Barium (0.02), Cadmium (0.017), Lead (0.017), Antimony (0.008), Tin (0.007), Manganese (0.006), Thallium (0.004), Tungsten (0.004) in urine, and Lead (0.048), Mercury (0.035), Selenium (0.05), Manganese (0.007) in blood positively influenced the model, while Cadmium (-0.001) in urine negatively influenced the model. Study participants' hypertension associated with heavy metal exposure was identified by an efficient, robust, and interpretable GA-XGB model with SHAP and LIME. Barium, Cadmium, Lead, Antimony, Tin, Manganese, Thallium, Tungsten in urine, and Lead, Mercury, Selenium, Manganese in blood are positively correlated with hypertension, while Cadmium in blood is negatively correlated with hypertension.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简单如天发布了新的文献求助10
1秒前
HJJHJH发布了新的文献求助10
1秒前
tsn发布了新的文献求助10
1秒前
科研通AI6应助asdfzxcv采纳,获得10
1秒前
Jasper应助憨憨采纳,获得10
2秒前
专注的问寒应助Myl采纳,获得20
2秒前
万能图书馆应助李梦瑶采纳,获得10
2秒前
aaaaa发布了新的文献求助10
3秒前
3秒前
3秒前
思源应助浮生采纳,获得10
3秒前
4秒前
4秒前
林深发布了新的文献求助10
4秒前
spc68应助HJJHJH采纳,获得10
4秒前
小蘑菇应助HJJHJH采纳,获得10
4秒前
zouxiang完成签到,获得积分10
5秒前
5秒前
自由人发布了新的文献求助10
5秒前
调皮的炳发布了新的文献求助10
5秒前
6秒前
ctttt发布了新的文献求助10
7秒前
7秒前
qwe123发布了新的文献求助20
8秒前
8秒前
FJLSDNMV完成签到,获得积分10
8秒前
在水一方应助霸气的金鱼采纳,获得10
8秒前
8秒前
幽默的小之完成签到,获得积分10
8秒前
9秒前
爆米花应助简单如天采纳,获得10
9秒前
热带蚂蚁发布了新的文献求助10
9秒前
sensen完成签到,获得积分10
10秒前
轻松的延恶关注了科研通微信公众号
10秒前
10秒前
David发布了新的文献求助10
11秒前
爆米花应助未来采纳,获得10
11秒前
ZAL发布了新的文献求助10
11秒前
sensen发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389