Flow fields prediction for data-driven model of parallel twin cylinders based on POD-RBFNN and POD-BPNN surrogate models

交货地点 替代模型 计算流体力学 替代数据 快照(计算机存储) 数学 本征正交分解 人工神经网络 计算机科学 算法 数学优化 人工智能 机械 物理 非线性系统 量子力学 农学 生物 操作系统
作者
Guangyun Min,Naibin Jiang
出处
期刊:Annals of Nuclear Energy [Elsevier]
卷期号:199: 110342-110342 被引量:7
标识
DOI:10.1016/j.anucene.2024.110342
摘要

Flow around cylinders is an important phenomenon in many different engineering fields. In this paper, the fast prediction of the pressure fields of parallel twin cylinders is implemented based on a data-driven algorithm. Firstly, the pressure fields of parallel twin cylinders with a low Reynolds number are obtained through the Computational Fluid Dynamics (CFD) method. The pressure fields at different time steps are collected to form a snapshot matrix. The Proper Orthogonal Decomposition (POD) algorithm is then applied to obtain the POD basis vectors of the snapshot matrix, enabling the reconstruing the pressure fields. Subsequently, two reduced-order models (ROM) called the POD-RBFNN and POD-BPNN surrogate models are proposed in this paper. The POD-RBFNN surrogate model uses the Radial Basis Function Neural Network (RBFNN) to train the POD mode coefficients obtained from the POD algorithm, while the POD-BPNN surrogate model uses the Backpropagation Neural Network (BPNN) for the same purpose. Linearly combining the POD mode coefficients predicted by the POD-RBFNN or POD-BPNN surrogate models with the POD basis vectors obtained from the POD algorithm enables fast and efficient prediction of pressure fields for non-sample points. Finally, comparisons are made between the predicted pressure fields obtained from these two surrogate models and the actual values obtained through CFD simulations. It is found that both the POD-RBFNN and POD-BPNN surrogate models proposed in this paper not only significantly improve efficiency but also maintain a high level of accuracy. However, the training time of the POD-RBFNN surrogate model is significantly shorter than that of the POD-BPNN surrogate model. Additionally, the POD-RBFNN surrogate model exhibits smaller Root Mean Square Errors (RMSE) and Mean Absolute Error (MAE). For the data-driven model of parallel twin cylinders described in this paper, the POD-RBFNN surrogate model is more suitable to predict the pressure fields. The research results in this paper are believed to hold significant value for CFD calculations of parallel twin cylinder models, offering essential guidance for a deeper understanding of cylinder flow problems and optimizing engineering design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻的冬寒完成签到 ,获得积分10
1秒前
深情安青应助Ray采纳,获得10
1秒前
xue112完成签到 ,获得积分10
2秒前
7秒前
8秒前
nt1119完成签到 ,获得积分10
11秒前
xiao完成签到 ,获得积分10
11秒前
火山完成签到 ,获得积分10
11秒前
huangqian完成签到,获得积分10
24秒前
30秒前
Yolenders完成签到 ,获得积分10
34秒前
XS_QI完成签到 ,获得积分10
35秒前
细心的语蓉完成签到,获得积分10
45秒前
CodeCraft应助科研通管家采纳,获得10
46秒前
天将明完成签到 ,获得积分10
57秒前
刻苦的新烟完成签到 ,获得积分10
1分钟前
瓜田刺猹完成签到,获得积分10
1分钟前
QXS完成签到 ,获得积分10
1分钟前
张伟完成签到 ,获得积分10
1分钟前
千倾完成签到 ,获得积分10
1分钟前
赶路人完成签到,获得积分20
1分钟前
minuxSCI完成签到,获得积分10
1分钟前
欢呼白晴完成签到 ,获得积分10
1分钟前
1分钟前
zl发布了新的文献求助10
1分钟前
Duduk完成签到 ,获得积分10
1分钟前
回首不再是少年完成签到,获得积分0
1分钟前
xiahongmei完成签到 ,获得积分10
2分钟前
高兴寒梦完成签到 ,获得积分10
2分钟前
三伏天完成签到,获得积分10
2分钟前
CodeCraft应助zl采纳,获得10
2分钟前
妮妮完成签到 ,获得积分10
2分钟前
Jason发布了新的文献求助10
2分钟前
酷酷涫完成签到 ,获得积分0
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
2分钟前
香蕉觅云应助甜蜜的代容采纳,获得10
2分钟前
郑洲完成签到 ,获得积分10
2分钟前
Ray发布了新的文献求助10
2分钟前
Jason完成签到,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768880
捐赠科研通 2440255
什么是DOI,文献DOI怎么找? 1297353
科研通“疑难数据库(出版商)”最低求助积分说明 624928
版权声明 600792