人工智能
计算机科学
质量保证
管道(软件)
深度学习
情态动词
计算机视觉
基本事实
模式识别(心理学)
医学
病理
化学
高分子化学
程序设计语言
外部质量评估
作者
Shunyao Luan,Jun Ouyang,Xiaofei Yang,Wei Wei,Xudong Xue,Benpeng Zhu
标识
DOI:10.1088/1361-6560/ad2a97
摘要
Accurate delineation of organs-at-risk (OARs) is a critical step in radiotherapy. The deep learning generated segmentations usually need to be reviewed and corrected by oncologists manually, which is time-consuming and operator-dependent. Therefore, an automated quality assurance (QA) and adaptive optimization correction strategy was proposed to identify and optimize 'incorrect' auto-segmentations.
科研通智能强力驱动
Strongly Powered by AbleSci AI