Machine learning guides the discovery of high-performance HEA catalysts

催化作用 计算机科学 化学 有机化学
作者
Jike Wang,Min Wei,Junyu Zhang
出处
期刊:IntechOpen eBooks [IntechOpen]
标识
DOI:10.5772/intechopen.1004118
摘要

High performance catalysts are crucial to generating clean fuels, reducing the impact of global warming, and providing solutions to environmental pollution. Improved processes for catalyst design and a better understanding of catalytic processes are key for improving the effectiveness and activities. HEAs typically have at least four principal elements, this atomic structure gives them unique properties that have applications and excellent performance in a variety of fields including catalysis. The complexity of HEAs makes challenge for computational researchers, providing promising opportunities for the application of machine learning. Recent advances in data science have great potential to accelerate catalyst research, particularly the rapid exploration of large materials chemistry spaces through machine learning. Here a comprehensive and critical review of machine learning techniques used in HEA catalysis research is provided. Sources of HEA catalyst data and current approaches to represent these materials by mathematical features are described, the most commonly used machine learning methods summarized, and the quality and utility of catalyst models evaluated. Illustrations of how machine learning models are applied to novel HEA catalysts discovery and used to reveal catalytic reaction mechanisms are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无趣养乐多完成签到 ,获得积分10
1秒前
顾矜应助阿杰采纳,获得10
2秒前
2秒前
Hello应助smy采纳,获得50
6秒前
白白白发布了新的文献求助10
7秒前
ll完成签到,获得积分10
8秒前
9秒前
大个应助Ding采纳,获得10
9秒前
孟德尔吃豌豆完成签到,获得积分10
9秒前
zhanglan完成签到,获得积分10
10秒前
星辰大海应助胡楠采纳,获得10
11秒前
小二郎应助幽篁采纳,获得30
12秒前
SciGPT应助钱来采纳,获得10
12秒前
Zack发布了新的文献求助10
13秒前
魏笑白完成签到 ,获得积分10
15秒前
tian完成签到,获得积分0
15秒前
16秒前
基围虾完成签到,获得积分10
21秒前
科研狗完成签到,获得积分10
21秒前
Ding发布了新的文献求助10
22秒前
小萧完成签到,获得积分10
23秒前
卡卡罗特完成签到,获得积分10
24秒前
皮蛋瘦肉洲完成签到,获得积分10
25秒前
25秒前
帕芙芙完成签到,获得积分10
26秒前
粽子完成签到,获得积分10
26秒前
27秒前
28秒前
FashionBoy应助科研通管家采纳,获得30
28秒前
28秒前
我是老大应助科研通管家采纳,获得10
28秒前
薰硝壤应助科研通管家采纳,获得10
28秒前
不配.应助科研通管家采纳,获得20
28秒前
薰硝壤应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791539
关于积分的说明 7799401
捐赠科研通 2447880
什么是DOI,文献DOI怎么找? 1302124
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194