The important role of reliable land surface model simulation in high-resolution multi-source soil moisture data fusion by machine learning

环境科学 遥感 高分辨率 传感器融合 分辨率(逻辑) 曲面(拓扑) 土地利用 土壤科学 计算机科学 水文学(农业) 地质学 岩土工程 土木工程 人工智能 工程类 几何学 数学
作者
Junhan Zeng,Xing Yuan,Peng Ji
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:630: 130700-130700 被引量:11
标识
DOI:10.1016/j.jhydrol.2024.130700
摘要

While machine learning (ML) is used to correct gridded soil moisture (SM) products by fusing in-situ observations, the contribution of land surface model (LSM)- and satellite-based SM products are yet to be validated over a large area, leading to imprudent adoption of SM product(s) for data fusion. In this study, single or multiple SM products from CSSPv2 LSM simulation, ERA5 and GLDASv2.1 reanalysis, and ESA-CCI satellite data with different resolutions are used to train ML models and generate daily SM estimates at 0.0625° resolution with in-situ measurements as target and relevant variables as auxiliary. Three widely used ML methods, namely Random Forest (RF), LightGBM, and XGBoost, were compared. Validations over independent in-situ stations during 2012–2017 showed the improvement of fusion products against their corresponding raw products, with KGE and CC increased by 87 % and 6 %, and RMSE decreased by 22 % for SM at surface and rootzone layers. Regionally, ML-based SM estimates improve mainly in southeast China. Merging three coarse-resolution SM datasets (i.e., ERA5, GLDASv2.1 and ESA-CCI) together with in-situ observations further increases KGE and CC by 15 % and 5 % against individual fusion products, but it still fails to outperform the individual high-resolution fusion product of ML/CSSPv2. Merging all four gridded SM products with in-situ data shows advantage against the ML/CSSPv2, with KGE and CC increased by 9 % and 7 %. The results are consistent by using different ML methods. This study suggests the importance of high-resolution LSM for SM data fusion, even with the emergence of ML approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
犹豫觅翠发布了新的文献求助10
刚刚
1秒前
1秒前
哈哈完成签到 ,获得积分10
1秒前
Mia发布了新的文献求助10
2秒前
2秒前
牛牛发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
困困包发布了新的文献求助10
6秒前
曹梓轩发布了新的文献求助10
6秒前
6秒前
8秒前
cmint完成签到 ,获得积分10
8秒前
AllenXia发布了新的文献求助10
8秒前
9秒前
科研小辉完成签到,获得积分10
9秒前
小锤发布了新的文献求助10
9秒前
我是老大应助眼睛大怜容采纳,获得10
9秒前
Chelsea完成签到,获得积分20
10秒前
zhangmy1989发布了新的文献求助10
12秒前
13秒前
zhiqu完成签到,获得积分10
13秒前
白踏歌发布了新的文献求助10
14秒前
Lucas应助木子采纳,获得10
15秒前
星辰大海应助MaoSen采纳,获得10
15秒前
十二半径发布了新的文献求助10
16秒前
黄123完成签到,获得积分10
19秒前
xzy发布了新的文献求助100
20秒前
20秒前
今后应助木子采纳,获得10
20秒前
20秒前
21秒前
隐形曼青应助Bambi采纳,获得10
22秒前
ding应助魏雨轩采纳,获得10
24秒前
1234发布了新的文献求助10
26秒前
滴滴答答发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296623
求助须知:如何正确求助?哪些是违规求助? 4445778
关于积分的说明 13837294
捐赠科研通 4330749
什么是DOI,文献DOI怎么找? 2377237
邀请新用户注册赠送积分活动 1372556
关于科研通互助平台的介绍 1337990