The important role of reliable land surface model simulation in high-resolution multi-source soil moisture data fusion by machine learning

环境科学 遥感 高分辨率 传感器融合 分辨率(逻辑) 曲面(拓扑) 土地利用 土壤科学 计算机科学 水文学(农业) 地质学 岩土工程 土木工程 人工智能 工程类 几何学 数学
作者
Junhan Zeng,Xing Yuan,Peng Ji
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130700-130700 被引量:3
标识
DOI:10.1016/j.jhydrol.2024.130700
摘要

While machine learning (ML) is used to correct gridded soil moisture (SM) products by fusing in-situ observations, the contribution of land surface model (LSM)- and satellite-based SM products are yet to be validated over a large area, leading to imprudent adoption of SM product(s) for data fusion. In this study, single or multiple SM products from CSSPv2 LSM simulation, ERA5 and GLDASv2.1 reanalysis, and ESA-CCI satellite data with different resolutions are used to train ML models and generate daily SM estimates at 0.0625° resolution with in-situ measurements as target and relevant variables as auxiliary. Three widely used ML methods, namely Random Forest (RF), LightGBM, and XGBoost, were compared. Validations over independent in-situ stations during 2012–2017 showed the improvement of fusion products against their corresponding raw products, with KGE and CC increased by 87 % and 6 %, and RMSE decreased by 22 % for SM at surface and rootzone layers. Regionally, ML-based SM estimates improve mainly in southeast China. Merging three coarse-resolution SM datasets (i.e., ERA5, GLDASv2.1 and ESA-CCI) together with in-situ observations further increases KGE and CC by 15 % and 5 % against individual fusion products, but it still fails to outperform the individual high-resolution fusion product of ML/CSSPv2. Merging all four gridded SM products with in-situ data shows advantage against the ML/CSSPv2, with KGE and CC increased by 9 % and 7 %. The results are consistent by using different ML methods. This study suggests the importance of high-resolution LSM for SM data fusion, even with the emergence of ML approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
陈一口完成签到 ,获得积分10
4秒前
4秒前
4秒前
hehehe完成签到,获得积分10
4秒前
Orange应助整齐雁芙采纳,获得30
5秒前
5秒前
五公里小战士完成签到,获得积分10
7秒前
阔达岂愈发布了新的文献求助30
7秒前
wu8577应助DBTX采纳,获得10
8秒前
9秒前
现代的访曼应助bxyyy采纳,获得20
10秒前
豌豆发布了新的文献求助10
10秒前
daodaodaodao完成签到,获得积分10
12秒前
儒雅的若剑完成签到,获得积分10
12秒前
陈艳林发布了新的文献求助10
12秒前
16秒前
sunnyfish007完成签到,获得积分10
16秒前
17秒前
充电宝应助虎啊虎啊采纳,获得10
17秒前
17秒前
犹豫的夏旋完成签到 ,获得积分10
18秒前
weilucking应助dudu采纳,获得10
19秒前
aoba完成签到 ,获得积分10
19秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
信仰发布了新的文献求助10
22秒前
23秒前
852应助还单身的香之采纳,获得10
23秒前
Orange应助月眠眠采纳,获得10
25秒前
愉快西牛完成签到 ,获得积分10
26秒前
26秒前
MMM完成签到 ,获得积分10
27秒前
月儿呗发布了新的文献求助10
27秒前
28秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958130
求助须知:如何正确求助?哪些是违规求助? 3504312
关于积分的说明 11117892
捐赠科研通 3235623
什么是DOI,文献DOI怎么找? 1788403
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802547