Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network

Softmax函数 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 特征提取 方位(导航) 断层(地质) 深度学习 数据挖掘 人工神经网络 地质学 地震学
作者
Qimin Shen,Zengqiang Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 12940-12952 被引量:6
标识
DOI:10.1109/access.2024.3357113
摘要

Convolutional neural networks (CNNs) serve as powerful feature extraction tools capable of effectively extracting information from complex environments, thus improving the accuracy of fault identification for bearing data. In this paper, we present a method for diagnosing bearing faults using an attention mechanism and a multi-scale convolutional neural network (MSCNN). Firstly, truncate and sample the rolling bearing data, and use continuous wavelet transform to generate corresponding time-frequency images, which will be used as inputs to the neural network. Next, the MSCNN, which includes efficient convolutional modules with residual structures, is utilized to extract features from the input data while maximizing the retention of valuable information. The extracted data then undergoes feature selection through the employment of an Efficient Convolutional Module (ECM) with channel attention. Finally, after being mapped through fully connected layers, the features are fed into a softmax layer for fault category prediction. In this study, the model results were tested and verified using the Case Western Reserve University (CWRU) dataset and the bearing dataset of Jiangnan University(JNU). A comparison was made with the LeNet model, ResNet model, LSTM model, and WDCNN model. The results showed that the classification accuracy of the ten types of bearing signals at the same speed can reach 100%, and the classification accuracy of the thirty types of bearing signals at different speeds can reach over 99.4%, significantly higher than the other models. The proposed method achieves the recognition of different fault states of rolling bearings under complex conditions, including multiple operating conditions and variable operating conditions. It is capable of extracting the global characteristic information of bearing faults, resulting in high diagnostic accuracy and good generalization ability. This method can provide reference for the diagnosis of rolling bearing faults under corresponding operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
遥远的尧应助温酒叙人生采纳,获得10
2秒前
善学以致用应助weijie采纳,获得10
3秒前
3秒前
Lobectomy完成签到,获得积分10
4秒前
4秒前
聪明的觅风完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
999完成签到,获得积分10
9秒前
9秒前
张中阳发布了新的文献求助10
10秒前
坦率天德发布了新的文献求助10
10秒前
一天三个蛋完成签到,获得积分10
10秒前
材料化学左亚坤完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
Progie应助LMFY采纳,获得10
12秒前
12秒前
12秒前
12秒前
明亮的海冬完成签到,获得积分10
12秒前
乐观寒珊发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
滴滴迪迪发布了新的文献求助10
16秒前
16秒前
hsing发布了新的文献求助10
18秒前
专注芹发布了新的文献求助10
18秒前
mei完成签到 ,获得积分10
18秒前
青葱发布了新的文献求助50
19秒前
Orange应助完美梨愁采纳,获得10
19秒前
20秒前
22秒前
宝儿姐关注了科研通微信公众号
22秒前
22秒前
彭于晏应助千纸鹤采纳,获得10
23秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157989
求助须知:如何正确求助?哪些是违规求助? 2809366
关于积分的说明 7881582
捐赠科研通 2467822
什么是DOI,文献DOI怎么找? 1313728
科研通“疑难数据库(出版商)”最低求助积分说明 630522
版权声明 601943