Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network

Softmax函数 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 特征提取 方位(导航) 断层(地质) 深度学习 数据挖掘 人工神经网络 地质学 地震学
作者
Qimin Shen,Zengqiang Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 12940-12952 被引量:6
标识
DOI:10.1109/access.2024.3357113
摘要

Convolutional neural networks (CNNs) serve as powerful feature extraction tools capable of effectively extracting information from complex environments, thus improving the accuracy of fault identification for bearing data. In this paper, we present a method for diagnosing bearing faults using an attention mechanism and a multi-scale convolutional neural network (MSCNN). Firstly, truncate and sample the rolling bearing data, and use continuous wavelet transform to generate corresponding time-frequency images, which will be used as inputs to the neural network. Next, the MSCNN, which includes efficient convolutional modules with residual structures, is utilized to extract features from the input data while maximizing the retention of valuable information. The extracted data then undergoes feature selection through the employment of an Efficient Convolutional Module (ECM) with channel attention. Finally, after being mapped through fully connected layers, the features are fed into a softmax layer for fault category prediction. In this study, the model results were tested and verified using the Case Western Reserve University (CWRU) dataset and the bearing dataset of Jiangnan University(JNU). A comparison was made with the LeNet model, ResNet model, LSTM model, and WDCNN model. The results showed that the classification accuracy of the ten types of bearing signals at the same speed can reach 100%, and the classification accuracy of the thirty types of bearing signals at different speeds can reach over 99.4%, significantly higher than the other models. The proposed method achieves the recognition of different fault states of rolling bearings under complex conditions, including multiple operating conditions and variable operating conditions. It is capable of extracting the global characteristic information of bearing faults, resulting in high diagnostic accuracy and good generalization ability. This method can provide reference for the diagnosis of rolling bearing faults under corresponding operating conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闫超然发布了新的文献求助10
刚刚
sfh完成签到,获得积分10
刚刚
熊子文完成签到 ,获得积分10
刚刚
shangfeng发布了新的文献求助10
刚刚
刚刚
LX应助称心的蛟凤采纳,获得10
1秒前
文文完成签到,获得积分20
1秒前
可yi完成签到,获得积分10
1秒前
卢彦冬发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
2秒前
小王发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
SJJ应助hxx采纳,获得10
4秒前
科研通AI2S应助123456采纳,获得10
4秒前
4秒前
4秒前
4秒前
风中冰香应助悦耳伯云采纳,获得10
4秒前
孙小爽完成签到,获得积分20
5秒前
戊烷完成签到,获得积分10
5秒前
5秒前
爆米花应助肖鹏采纳,获得10
6秒前
7秒前
huahua发布了新的文献求助10
7秒前
孙小爽发布了新的文献求助10
8秒前
落后的晓灵完成签到,获得积分10
8秒前
隐形的依秋完成签到,获得积分10
8秒前
爱看文献的小恐龙完成签到,获得积分10
9秒前
9秒前
思源应助weishao采纳,获得10
9秒前
可以2完成签到,获得积分10
9秒前
jiujiu发布了新的文献求助20
9秒前
小二郎应助卢彦冬采纳,获得30
10秒前
淡淡新竹发布了新的文献求助30
10秒前
10秒前
多加芝士发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551713
求助须知:如何正确求助?哪些是违规求助? 4636568
关于积分的说明 14644524
捐赠科研通 4578430
什么是DOI,文献DOI怎么找? 2510815
邀请新用户注册赠送积分活动 1486102
关于科研通互助平台的介绍 1457449