Fault Diagnosis Method for Bearing Based on Attention Mechanism and Multi-Scale Convolutional Neural Network

Softmax函数 卷积神经网络 计算机科学 模式识别(心理学) 人工智能 特征提取 方位(导航) 断层(地质) 深度学习 数据挖掘 人工神经网络 地质学 地震学
作者
Qimin Shen,Zengqiang Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 12940-12952 被引量:6
标识
DOI:10.1109/access.2024.3357113
摘要

Convolutional neural networks (CNNs) serve as powerful feature extraction tools capable of effectively extracting information from complex environments, thus improving the accuracy of fault identification for bearing data. In this paper, we present a method for diagnosing bearing faults using an attention mechanism and a multi-scale convolutional neural network (MSCNN). Firstly, truncate and sample the rolling bearing data, and use continuous wavelet transform to generate corresponding time-frequency images, which will be used as inputs to the neural network. Next, the MSCNN, which includes efficient convolutional modules with residual structures, is utilized to extract features from the input data while maximizing the retention of valuable information. The extracted data then undergoes feature selection through the employment of an Efficient Convolutional Module (ECM) with channel attention. Finally, after being mapped through fully connected layers, the features are fed into a softmax layer for fault category prediction. In this study, the model results were tested and verified using the Case Western Reserve University (CWRU) dataset and the bearing dataset of Jiangnan University(JNU). A comparison was made with the LeNet model, ResNet model, LSTM model, and WDCNN model. The results showed that the classification accuracy of the ten types of bearing signals at the same speed can reach 100%, and the classification accuracy of the thirty types of bearing signals at different speeds can reach over 99.4%, significantly higher than the other models. The proposed method achieves the recognition of different fault states of rolling bearings under complex conditions, including multiple operating conditions and variable operating conditions. It is capable of extracting the global characteristic information of bearing faults, resulting in high diagnostic accuracy and good generalization ability. This method can provide reference for the diagnosis of rolling bearing faults under corresponding operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ultraman完成签到,获得积分10
1秒前
王宁发布了新的文献求助10
1秒前
十四完成签到 ,获得积分10
2秒前
LLL发布了新的文献求助10
2秒前
2秒前
开花开花发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
calm发布了新的文献求助10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
kingwill应助科研通管家采纳,获得20
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
musejie应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
5秒前
balabala发布了新的文献求助10
5秒前
5秒前
Chandler完成签到,获得积分10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
啦啦啦发布了新的文献求助10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
summer应助科研通管家采纳,获得10
5秒前
kingwill应助科研通管家采纳,获得20
6秒前
古往今来应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得30
6秒前
6秒前
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620