High-resolution building extraction based on the edge-aware network CEEAU_Net

计算机科学 交叉口(航空) GSM演进的增强数据速率 特征提取 分割 数据挖掘 人工智能 深度学习 特征(语言学) 编码器 模式识别(心理学) 遥感 地图学 地理 操作系统 哲学 语言学
作者
Rui Liu,Ao Zhang,Fenghua Huang,Guolei He,Jinsong Gou,Yuzhu Lei,Lei Wu
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad214f
摘要

Abstract Spatial information such as building location and distribution plays an important role in urban dynamic monitoring and urban planning applications. In recent years, deep learning methods have developed rapidly and achieved state-of-the-art performance in building extraction from remote sensing images in a variety of scenarios. However, existing semantic segmentation models pay more attention to global semantic information, emphasize multi-scale feature fusion or set lighter acceptance domains to obtain more global features, and ignore low-level detail features such as edges. Therefore, a new end-to-end deep learning network CEEAU-Net based on encoder-decoder architecture is designed to add edge sensing module and edge feature extraction module to obtain edge feature information of buildings. The Luxian County area of Luzhou City, Sichuan Province is selected for building dataset production, which is located in the Longmenshan seismic zone, with many earthquakes of magnitude 3 or above, and the scene is complex, so a more accurate building extraction method is needed. Comparison experiments are also conducted with several advanced models on two public datasets, WHU and Massachusetts. Selection of multiple indicators for indicator evaluation of results. CEEAU_net achieves the best results in the metrics of Overall Accuracy, F1-Score, Intersection over Union (IoU) and Mean Intersection over Union (MIoU), which suggests that the method proposed in this paper can effectively improve the accuracy of building extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助DYJ采纳,获得10
刚刚
理理发布了新的文献求助10
2秒前
顾矜应助huangqinxue采纳,获得10
3秒前
meng发布了新的文献求助10
3秒前
5秒前
云过半山发布了新的文献求助10
5秒前
5秒前
6秒前
jian完成签到 ,获得积分10
6秒前
星辰大海应助暴躁的诗槐采纳,获得10
7秒前
8秒前
华仔应助霸气若菱采纳,获得10
9秒前
思源应助笋尖266采纳,获得10
9秒前
SciGPT应助xiaoyi采纳,获得10
9秒前
瑶林发布了新的文献求助10
9秒前
10秒前
12秒前
hxscu完成签到 ,获得积分10
12秒前
Capacition6完成签到,获得积分10
12秒前
13秒前
非一样的感觉完成签到,获得积分10
14秒前
14秒前
小马甲应助干雅柏采纳,获得10
15秒前
16秒前
厌厌完成签到,获得积分10
16秒前
YC发布了新的文献求助10
16秒前
体贴菠萝完成签到,获得积分10
17秒前
醉熏的月亮完成签到,获得积分10
17秒前
17秒前
17秒前
活泼山雁发布了新的文献求助10
18秒前
念头发布了新的文献求助10
18秒前
believe发布了新的文献求助20
18秒前
小白完成签到,获得积分10
19秒前
温暖元容完成签到,获得积分10
19秒前
kkk完成签到,获得积分10
19秒前
20秒前
周周发布了新的文献求助10
21秒前
22秒前
22秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443976
求助须知:如何正确求助?哪些是违规求助? 3040026
关于积分的说明 8979713
捐赠科研通 2728615
什么是DOI,文献DOI怎么找? 1496604
科研通“疑难数据库(出版商)”最低求助积分说明 691789
邀请新用户注册赠送积分活动 689341