Both protein and non-protein components in extracellular vesicles of human seminal plasma improve human sperm function via CatSper-mediated calcium signaling

精子 细胞外 精子活力 过度活跃 精液 运动性 细胞生物学 男科 电容 钙信号传导 生物 化学 信号转导 内科学 医学
作者
Xiaoning Zhang,Minzu Liang,Dandan Song,Rongzu Huang,Chen Chen,Xiaojun Liu,Houyang Chen,Qingxin Wang,Xiaoli Sun,Jian Song,Jiali Zhang,Hang Kang,Xuhui Zeng
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:39 (4): 658-673 被引量:8
标识
DOI:10.1093/humrep/deae018
摘要

Abstract STUDY QUESTION What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助液体剑0932采纳,获得10
1秒前
LINE发布了新的文献求助10
1秒前
uwx发布了新的文献求助10
1秒前
1秒前
Dream完成签到,获得积分20
1秒前
韭菜发布了新的文献求助10
1秒前
1秒前
1秒前
wsr发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
星辰大海应助任我行采纳,获得10
3秒前
WWYYXX发布了新的文献求助10
3秒前
mike_007发布了新的文献求助10
3秒前
3秒前
Dream发布了新的文献求助10
4秒前
一一完成签到,获得积分10
4秒前
小陈发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
5秒前
大个应助Koma采纳,获得10
5秒前
5秒前
bin发布了新的文献求助10
5秒前
5秒前
王达发布了新的文献求助10
6秒前
猪猪侠完成签到,获得积分10
6秒前
小二郎应助Mark采纳,获得10
6秒前
zhf完成签到,获得积分20
6秒前
6秒前
迷路小丸子完成签到,获得积分10
6秒前
英俊的铭应助LINE采纳,获得10
6秒前
Zzz完成签到,获得积分10
7秒前
hou完成签到,获得积分10
7秒前
BYN发布了新的文献求助10
7秒前
小啵发布了新的文献求助10
7秒前
whisper发布了新的文献求助10
7秒前
薛之谦的猫应助韭菜采纳,获得10
7秒前
英姑应助韭菜采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5652241
求助须知:如何正确求助?哪些是违规求助? 4787067
关于积分的说明 15059109
捐赠科研通 4810870
什么是DOI,文献DOI怎么找? 2573458
邀请新用户注册赠送积分活动 1529283
关于科研通互助平台的介绍 1488194