Both protein and non-protein components in extracellular vesicles of human seminal plasma improve human sperm function via CatSper-mediated calcium signaling

精子 细胞外 精子活力 过度活跃 精液 运动性 细胞生物学 男科 电容 钙信号传导 生物 化学 信号转导 内科学 医学
作者
Xiaoning Zhang,Minzu Liang,Dandan Song,Rongzu Huang,Chen Chen,Xiaojun Liu,Houyang Chen,Qingxin Wang,Xiaoli Sun,Jian Song,Jiali Zhang,Hang Kang,Xuhui Zeng
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:39 (4): 658-673 被引量:2
标识
DOI:10.1093/humrep/deae018
摘要

Abstract STUDY QUESTION What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzhw发布了新的文献求助10
1秒前
superlee完成签到,获得积分10
1秒前
RCheng应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
开心应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
pwy应助科研通管家采纳,获得10
3秒前
美满忆文应助科研通管家采纳,获得10
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
4秒前
在水一方应助朴素亦绿采纳,获得10
4秒前
爆米花应助小伊采纳,获得10
5秒前
5秒前
远古遗迹完成签到,获得积分10
7秒前
XTM发布了新的文献求助20
9秒前
yayan发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
CQ完成签到,获得积分10
11秒前
高兴寒梦发布了新的文献求助10
12秒前
Renee应助拓小八采纳,获得10
14秒前
CG发布了新的文献求助10
15秒前
乐乐应助Bonnie采纳,获得50
16秒前
幻影阡曦发布了新的文献求助10
16秒前
传奇3应助DUTlh采纳,获得10
19秒前
共享精神应助果酱采纳,获得10
20秒前
科研通AI2S应助轻松的恋风采纳,获得10
21秒前
mmlikeu关注了科研通微信公众号
26秒前
慈祥的依云完成签到,获得积分10
27秒前
不安的松发布了新的文献求助10
27秒前
呆呆瓜发布了新的文献求助10
31秒前
31秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160995
求助须知:如何正确求助?哪些是违规求助? 2812220
关于积分的说明 7894949
捐赠科研通 2471119
什么是DOI,文献DOI怎么找? 1315906
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086