清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Residual facial erythema in atopic dermatitis patients treated with dupilumab stratified by machine learning

医学 杜皮鲁玛 红斑 特应性皮炎 皮肤病科 嗜酸性粒细胞 内科学 曲线下面积 接收机工作特性 哮喘
作者
Koichi Ashizaki,Tetsuo Ishikawa,Y. Nomura
出处
标识
DOI:10.1111/jdv.19909
摘要

Abstract Background Persistent facial erythema represents a significant complication in atopic dermatitis (AD) patients undergoing treatment with dupilumab. Stratifying patients based on the erythema course is crucial for elucidating heterogeneous phenotypes and facilitating advanced drug efficacy predictions. Objectives This study aimed to identify factors associated with facial erythema severity in dupilumab‐treated AD patients and to establish a prediction model for drug response based on the identified factors. Methods Data from a retrospective study conducted between July 2018 and July 2021 were collected and analysed. Patients were categorized into three groups via hierarchical clustering based on the course of facial erythema: early remission, low remission and persistent residual. LightGBM, a supervised gradient boosting decision tree algorithm, was employed to discern group differences and construct a prediction model. The model incorporated patient demographic and clinical profiles, including pre‐ and post‐treatment examinations. The model's performance was evaluated using accuracy and the area under the receiver operating characteristic curve (AUC). Results The binary classification model demonstrated an accuracy of 89.10% and an AUC of 0.862 when distinguishing between early remission and persistent residual patients. The eight prominent factors associated with facial erythema severity included age, sex, lactate dehydrogenase (LDH), immunoglobulin E (IgE), eosinophil count, white blood cell count, Alnus allergy and cedar allergy. Conclusions This study has two main significances: first, three clusters were identified through unsupervised learning; second, a classification model was constructed that proved more accurate than random prediction. The stratification and identification of crucial factors associated with residual facial erythema in dupilumab‐treated AD patients lay the foundation for AI‐powered prognostic models. This groundwork provides a substantial basis for enhancing future medical AI support in AD treatment selection, potentially improving personalized treatment approaches and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echan完成签到,获得积分10
7秒前
Echan发布了新的文献求助10
15秒前
16秒前
风中凡霜发布了新的文献求助10
22秒前
h7525yanghan完成签到 ,获得积分20
1分钟前
JJ完成签到 ,获得积分10
1分钟前
刘刘完成签到 ,获得积分10
2分钟前
2分钟前
快乐的睫毛完成签到 ,获得积分10
3分钟前
车访枫完成签到 ,获得积分10
4分钟前
老姚完成签到,获得积分10
4分钟前
肆肆完成签到,获得积分10
5分钟前
不配.应助明理问柳采纳,获得10
6分钟前
Lucas应助Echan采纳,获得10
6分钟前
实力不允许完成签到 ,获得积分10
7分钟前
谭凯文完成签到 ,获得积分10
8分钟前
丘比特应助科研通管家采纳,获得10
8分钟前
明理问柳完成签到,获得积分10
8分钟前
12分钟前
Echan发布了新的文献求助10
12分钟前
doreen完成签到 ,获得积分10
12分钟前
中央发布了新的文献求助10
13分钟前
zxq1996完成签到 ,获得积分10
13分钟前
13分钟前
Nemo发布了新的文献求助30
13分钟前
14分钟前
Malmever发布了新的文献求助10
14分钟前
科目三应助黙宇循光采纳,获得10
14分钟前
14分钟前
黙宇循光发布了新的文献求助10
14分钟前
Jj7完成签到,获得积分10
15分钟前
lena完成签到,获得积分10
15分钟前
田様应助黙宇循光采纳,获得10
16分钟前
16分钟前
爆米花应助科研通管家采纳,获得10
16分钟前
黙宇循光发布了新的文献求助10
16分钟前
16分钟前
希勤发布了新的文献求助10
16分钟前
林才发布了新的文献求助10
16分钟前
16分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133981
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768734
捐赠科研通 2440219
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624920
版权声明 600792