Residual facial erythema in atopic dermatitis patients treated with dupilumab stratified by machine learning

医学 杜皮鲁玛 红斑 特应性皮炎 皮肤病科 嗜酸性粒细胞 内科学 曲线下面积 接收机工作特性 哮喘
作者
Koichi Ashizaki,Tetsuo Ishikawa,Y. Nomura
出处
标识
DOI:10.1111/jdv.19909
摘要

Abstract Background Persistent facial erythema represents a significant complication in atopic dermatitis (AD) patients undergoing treatment with dupilumab. Stratifying patients based on the erythema course is crucial for elucidating heterogeneous phenotypes and facilitating advanced drug efficacy predictions. Objectives This study aimed to identify factors associated with facial erythema severity in dupilumab‐treated AD patients and to establish a prediction model for drug response based on the identified factors. Methods Data from a retrospective study conducted between July 2018 and July 2021 were collected and analysed. Patients were categorized into three groups via hierarchical clustering based on the course of facial erythema: early remission, low remission and persistent residual. LightGBM, a supervised gradient boosting decision tree algorithm, was employed to discern group differences and construct a prediction model. The model incorporated patient demographic and clinical profiles, including pre‐ and post‐treatment examinations. The model's performance was evaluated using accuracy and the area under the receiver operating characteristic curve (AUC). Results The binary classification model demonstrated an accuracy of 89.10% and an AUC of 0.862 when distinguishing between early remission and persistent residual patients. The eight prominent factors associated with facial erythema severity included age, sex, lactate dehydrogenase (LDH), immunoglobulin E (IgE), eosinophil count, white blood cell count, Alnus allergy and cedar allergy. Conclusions This study has two main significances: first, three clusters were identified through unsupervised learning; second, a classification model was constructed that proved more accurate than random prediction. The stratification and identification of crucial factors associated with residual facial erythema in dupilumab‐treated AD patients lay the foundation for AI‐powered prognostic models. This groundwork provides a substantial basis for enhancing future medical AI support in AD treatment selection, potentially improving personalized treatment approaches and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北海完成签到,获得积分20
刚刚
受伤翠容发布了新的文献求助10
刚刚
2秒前
2秒前
zoe发布了新的文献求助10
2秒前
李健的小迷弟应助卷卷516采纳,获得10
2秒前
椰子发布了新的文献求助10
4秒前
4秒前
lm完成签到,获得积分10
5秒前
糕糕完成签到 ,获得积分10
6秒前
受伤翠容完成签到,获得积分10
6秒前
兔子完成签到 ,获得积分10
6秒前
yaochuan发布了新的文献求助10
7秒前
酱苹果完成签到 ,获得积分10
7秒前
8秒前
8秒前
zlfan2197发布了新的文献求助10
8秒前
epitaxy完成签到,获得积分10
8秒前
zwc完成签到,获得积分10
10秒前
李健的小迷弟应助晴云采纳,获得10
10秒前
12秒前
han发布了新的文献求助10
12秒前
传奇3应助kelven采纳,获得10
13秒前
梦鱼完成签到,获得积分10
13秒前
16秒前
孤独冬莲发布了新的文献求助20
16秒前
17秒前
炙热的白发布了新的文献求助10
17秒前
17秒前
在水一方应助出口的胖猪采纳,获得10
17秒前
从容芮应助qazxswedc采纳,获得10
18秒前
田様应助Moss采纳,获得10
19秒前
不配.给单薄的求助进行了留言
19秒前
DueDue0327发布了新的文献求助10
20秒前
123456发布了新的文献求助10
20秒前
21秒前
留胡子的白枫完成签到,获得积分10
22秒前
迷人芙蓉完成签到,获得积分10
22秒前
22秒前
ant完成签到,获得积分10
22秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3101308
求助须知:如何正确求助?哪些是违规求助? 2752714
关于积分的说明 7620589
捐赠科研通 2404990
什么是DOI,文献DOI怎么找? 1276041
科研通“疑难数据库(出版商)”最低求助积分说明 616692
版权声明 599058