亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Residual facial erythema in atopic dermatitis patients treated with dupilumab stratified by machine learning

医学 杜皮鲁玛 红斑 特应性皮炎 皮肤病科 嗜酸性粒细胞 内科学 曲线下面积 接收机工作特性 哮喘
作者
Koichi Ashizaki,Tetsuo Ishikawa,Y. Nomura
出处
标识
DOI:10.1111/jdv.19909
摘要

Abstract Background Persistent facial erythema represents a significant complication in atopic dermatitis (AD) patients undergoing treatment with dupilumab. Stratifying patients based on the erythema course is crucial for elucidating heterogeneous phenotypes and facilitating advanced drug efficacy predictions. Objectives This study aimed to identify factors associated with facial erythema severity in dupilumab‐treated AD patients and to establish a prediction model for drug response based on the identified factors. Methods Data from a retrospective study conducted between July 2018 and July 2021 were collected and analysed. Patients were categorized into three groups via hierarchical clustering based on the course of facial erythema: early remission, low remission and persistent residual. LightGBM, a supervised gradient boosting decision tree algorithm, was employed to discern group differences and construct a prediction model. The model incorporated patient demographic and clinical profiles, including pre‐ and post‐treatment examinations. The model's performance was evaluated using accuracy and the area under the receiver operating characteristic curve (AUC). Results The binary classification model demonstrated an accuracy of 89.10% and an AUC of 0.862 when distinguishing between early remission and persistent residual patients. The eight prominent factors associated with facial erythema severity included age, sex, lactate dehydrogenase (LDH), immunoglobulin E (IgE), eosinophil count, white blood cell count, Alnus allergy and cedar allergy. Conclusions This study has two main significances: first, three clusters were identified through unsupervised learning; second, a classification model was constructed that proved more accurate than random prediction. The stratification and identification of crucial factors associated with residual facial erythema in dupilumab‐treated AD patients lay the foundation for AI‐powered prognostic models. This groundwork provides a substantial basis for enhancing future medical AI support in AD treatment selection, potentially improving personalized treatment approaches and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
24秒前
量子星尘发布了新的文献求助10
32秒前
47秒前
blenx发布了新的文献求助10
53秒前
量子星尘发布了新的文献求助10
53秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Huong完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
任我行发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
平常易烟完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研通AI5应助blenx采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI5应助Faint_Dream采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
李爱国应助我为科研狂采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
Faint_Dream发布了新的文献求助10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小憨憨完成签到 ,获得积分10
5分钟前
Faint_Dream完成签到,获得积分10
5分钟前
研友_VZG7GZ应助Omni采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660994
求助须知:如何正确求助?哪些是违规求助? 3222200
关于积分的说明 9743994
捐赠科研通 2931798
什么是DOI,文献DOI怎么找? 1605232
邀请新用户注册赠送积分活动 757760
科研通“疑难数据库(出版商)”最低求助积分说明 734503