Transfer learning enables prediction of steel corrosion in concrete under natural environments

腐蚀 胶凝的 学习迁移 可预测性 混凝土保护层 水泥 氯化物 环境科学 灰浆 材料科学 计算机科学 人工智能 冶金 复合材料 数学 统计
作者
Haodong Ji,Ye Tian,Chuanqing Fu,Hailong Ye
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:148: 105488-105488 被引量:16
标识
DOI:10.1016/j.cemconcomp.2024.105488
摘要

Existing machine learning (ML) models for corrosion rate prediction of steel in cementitious materials are typically established based on laboratory datasets obtained under controlled material and environmental conditions, which questions their applicability to more realistic and complex scenarios. Transfer learning (TL), as a branch of ML, can extract knowledge from a source domain, which can be utilized to improve prediction accuracy on a target domain. In this work, a TL paradigm, grounded on an advanced ML model built for steel corrosion in mortars, is proposed to elevate the efficacy of existing ML models in forecasting corrosion rate of steel in concrete under natural environments. The results underscore the prominence of certain features, specifically electrical resistivity, chloride-to-hydroxide concentration ratio ([Cl−]/[OH−]), cement proportion, corrosion potential, porosity, and water content. In addition, the interplay of diverse quantities of features and feature amalgamations exercises a substantial influence on the performance of ML models. It is found that TL strategy enhances the ML model's predictability for corrosion rate in concrete under natural environments. The knowledge pertaining to steel corrosion under controlled laboratory conditions can be transferred to enhance the model's ability to predict steel corrosion in concrete under natural conditions. These results underscore TL's potential in enabling reliable corrosion rate predictions in existing in-service concrete structures, especially with limited data and deficient information for steel corrosion in concrete structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Roy完成签到,获得积分10
刚刚
永远少年完成签到,获得积分10
2秒前
niu1发布了新的文献求助10
2秒前
3秒前
Danny完成签到,获得积分10
3秒前
Lsx完成签到 ,获得积分10
3秒前
又胖了发布了新的文献求助10
4秒前
4秒前
小小飞发布了新的文献求助20
5秒前
5秒前
5秒前
6秒前
wanci应助NorthWang采纳,获得10
6秒前
zhen完成签到,获得积分10
8秒前
ns发布了新的文献求助30
9秒前
10秒前
逐风完成签到,获得积分10
10秒前
无奈的酒窝完成签到,获得积分10
11秒前
11秒前
12秒前
blingbling发布了新的文献求助10
12秒前
今后应助SherlockLiu采纳,获得30
14秒前
daniel发布了新的文献求助10
14秒前
Jason应助温言采纳,获得20
15秒前
逐风发布了新的文献求助30
16秒前
hhzz发布了新的文献求助10
16秒前
日月轮回完成签到,获得积分10
17秒前
18秒前
Yimim发布了新的文献求助10
18秒前
小小li完成签到 ,获得积分10
18秒前
小蘑菇应助细腻晓露采纳,获得10
18秒前
又胖了完成签到,获得积分10
19秒前
Eva完成签到,获得积分10
20秒前
20秒前
喵喵喵完成签到,获得积分20
20秒前
独摇之完成签到,获得积分10
20秒前
怡然雁凡完成签到,获得积分10
20秒前
顾jiu完成签到,获得积分10
21秒前
科研通AI5应助热依汗古丽采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808