Transfer learning enables prediction of steel corrosion in concrete under natural environments

腐蚀 自然(考古学) 学习迁移 环境科学 材料科学 计算机科学 人工智能 冶金 地质学 古生物学
作者
Haodong Ji,Ye Tian,Chuanqing Fu,Hailong Ye
出处
期刊:Cement & Concrete Composites [Elsevier]
卷期号:148: 105488-105488 被引量:12
标识
DOI:10.1016/j.cemconcomp.2024.105488
摘要

Existing machine learning (ML) models for corrosion rate prediction of steel in cementitious materials are typically established based on laboratory datasets obtained under controlled material and environmental conditions, which questions their applicability to more realistic and complex scenarios. Transfer learning (TL), as a branch of ML, can extract knowledge from a source domain, which can be utilized to improve prediction accuracy on a target domain. In this work, a TL paradigm, grounded on an advanced ML model built for steel corrosion in mortars, is proposed to elevate the efficacy of existing ML models in forecasting corrosion rate of steel in concrete under natural environments. The results underscore the prominence of certain features, specifically electrical resistivity, chloride-to-hydroxide concentration ratio ([Cl−]/[OH−]), cement proportion, corrosion potential, porosity, and water content. In addition, the interplay of diverse quantities of features and feature amalgamations exercises a substantial influence on the performance of ML models. It is found that TL strategy enhances the ML model's predictability for corrosion rate in concrete under natural environments. The knowledge pertaining to steel corrosion under controlled laboratory conditions can be transferred to enhance the model's ability to predict steel corrosion in concrete under natural conditions. These results underscore TL's potential in enabling reliable corrosion rate predictions in existing in-service concrete structures, especially with limited data and deficient information for steel corrosion in concrete structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lx完成签到,获得积分10
1秒前
9秒前
UncYoung完成签到,获得积分10
9秒前
haifei完成签到,获得积分10
10秒前
Amber完成签到,获得积分10
13秒前
香蕉觅云应助小文cremen采纳,获得10
16秒前
yao发布了新的文献求助10
16秒前
h嘿发布了新的文献求助10
17秒前
领导范儿应助哈哈哈哈采纳,获得10
18秒前
18秒前
wu完成签到 ,获得积分10
20秒前
21秒前
邓力发布了新的文献求助10
22秒前
26秒前
26秒前
Jasper应助爱听歌小兔子采纳,获得10
28秒前
邓力完成签到,获得积分10
29秒前
哈哈哈哈完成签到,获得积分10
29秒前
30秒前
yao完成签到,获得积分10
34秒前
35秒前
小不溜发布了新的文献求助10
35秒前
无花果应助大树2.0采纳,获得10
38秒前
ssos完成签到,获得积分10
39秒前
39秒前
怕孤单的听寒完成签到,获得积分10
40秒前
普雅花的等待完成签到,获得积分20
42秒前
42秒前
42秒前
科研通AI2S应助lushanxihai采纳,获得10
42秒前
wanci应助左幻竹采纳,获得10
42秒前
ssos发布了新的社区帖子
43秒前
梁小米完成签到,获得积分10
44秒前
45秒前
Hello应助深情的笑寒采纳,获得10
45秒前
英姑应助左丘冥采纳,获得10
45秒前
47秒前
shen发布了新的文献求助20
48秒前
馒头完成签到 ,获得积分10
48秒前
Foremelon发布了新的文献求助10
49秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164013
求助须知:如何正确求助?哪些是违规求助? 2814801
关于积分的说明 7906532
捐赠科研通 2474357
什么是DOI,文献DOI怎么找? 1317472
科研通“疑难数据库(出版商)”最低求助积分说明 631769
版权声明 602198