Echocardiographic artificial intelligence for pulmonary hypertension classification

医学 指南 肺动脉高压 逻辑回归 队列 推导 心脏病学 前瞻性队列研究 机器学习 内科学 队列研究 人工智能 病理 计算机科学 动脉
作者
Yukina Hirata,Takumasa Tsuji,J. Kotoku,Masataka Sata,Kenya Kusunose
出处
期刊:Heart [BMJ]
卷期号:110 (8): 586-593 被引量:5
标识
DOI:10.1136/heartjnl-2023-323320
摘要

Objective The classification of pulmonary hypertension (PH) is crucial for determining the appropriate therapeutic strategy. We investigated whether machine learning (ML) algorithms may assist in echocardiographic PH prediction, where current guidelines recommend integrating several different parameters. Methods We obtained physical and echocardiographic data from 885 patients who underwent right heart catheterisation (RHC). Patients were classified into three groups: non-PH, precapillary PH and postcapillary PH, based on values obtained from RHC. Using 24 parameters, we created predictive models employing four different classifiers and selected the one with the highest area under the curve. We then calculated the macro-average classification accuracy for PH on the derivation cohort (n=720) and prospective validation data set (n=165), comparing the results with guideline-based echocardiographic assessment obtained from each cohort. Results Logistic regression with elastic net regularisation had the highest classification accuracy, with areas under the curves of 0.789, 0.766 and 0.742 for normal, precapillary PH and postcapillary PH, respectively. The ML model demonstrated significantly better predictive accuracy than the guideline-based echocardiographic assessment in the derivation cohort (59.4% vs 51.6%, p<0.01). In the independent validation data set, the ML model’s accuracy was comparable to the guideline-based PH classification (59.4% vs 57.8%, p=0.638). Conclusions This preliminary study suggests promising potential for our ML model in predicting echocardiographic PH. Further research and validation are needed to fully assess its clinical utility in PH diagnosis and treatment decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
板栗完成签到,获得积分10
2秒前
leozhang完成签到,获得积分10
2秒前
yhbk发布了新的文献求助10
2秒前
十个勤天完成签到,获得积分10
2秒前
2秒前
hss完成签到 ,获得积分10
2秒前
2秒前
明天又是美好的一天完成签到 ,获得积分10
2秒前
学术大亨完成签到,获得积分10
2秒前
guomingqian发布了新的文献求助10
2秒前
ShengjuChen完成签到 ,获得积分10
3秒前
WYang完成签到,获得积分10
4秒前
小超人完成签到 ,获得积分10
4秒前
如初发布了新的文献求助10
4秒前
5秒前
随机的昵称完成签到,获得积分10
5秒前
阿龙完成签到,获得积分10
5秒前
Perrylin718完成签到,获得积分10
5秒前
5秒前
5秒前
lululemon完成签到 ,获得积分10
6秒前
风雨霖霖关注了科研通微信公众号
6秒前
biubiu完成签到,获得积分10
6秒前
项听蓉完成签到,获得积分10
6秒前
欣慰的海雪关注了科研通微信公众号
7秒前
貔貅完成签到,获得积分10
7秒前
8秒前
谦让柜子发布了新的文献求助10
8秒前
9秒前
9秒前
苹果小蜜蜂完成签到,获得积分10
9秒前
忧郁的风华完成签到,获得积分10
9秒前
zhang26xian完成签到,获得积分10
10秒前
chen完成签到,获得积分10
11秒前
11秒前
sky完成签到 ,获得积分10
11秒前
vv发布了新的文献求助10
12秒前
12秒前
赘婿应助奔流的河采纳,获得10
12秒前
小冯完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890