材料科学
碳纳米管
纳米技术
自愈
聚氨酯
涂层
耐久性
复合材料
医学
病理
替代医学
作者
Kai Yan,Hua Chen,Xiao Li,Fei Xu,Jun Wang,Qunna Xu,Yan Zong,Yabin Zhang
标识
DOI:10.1021/acsami.3c18996
摘要
Continuous monitoring of physiological health status and effective protection against external hazards is an indispensable aspect of healthcare management for critically vulnerable populations, particularly for infants or babies. So, the exploration of all-in-one devices remains critical to avoiding their injury and illness. The integration of multiple properties such as sensing, electromagnetic protection, warming/cooling, and water/bacterial repellence into a common fabric is no doubt a promising solution to coping with diverse application scenarios. However, achieving simultaneous integration in an effective and durable fashion faces huge challenges. Herein, multifunctional fabric was achieved by sequentially coating MXene, carbon nanotubes (CNTs), and self-healing polyurethane (PU) onto cotton fabric. The outstanding conductivity of MXene and CNTs as well as the self-healing ability of PU synergistically enable a flexible, breathable, protective, and sensing fabric with a good durability. It could detect the body motions like bending of the finger, elbow, wrist, and knee, with a high gauge factor of 8.78 and fast response. Moreover, this sensing fabric could protect the wearers against electromagnetic waves and bacteria, delivering a minimum reflection loss of −57.6 dB at 7.6 GHz and high bacterial inhibition efficiency due to the incorporation of MXene and polyethylenimine. Besides, the electrothermal performance of carbonaceous materials enables them to act as a heater for body warmth. The synergistic design of this multifunctional textile offers a promising strategy for producing advanced smart textiles, holding great promise in infant or baby healthcare.
科研通智能强力驱动
Strongly Powered by AbleSci AI