已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Task-Driven Controllable Scenario Generation Framework Based on AOG

计算机科学 任务(项目管理) 过程(计算) 马尔可夫过程 场景测试 马尔可夫链 驾驶模拟器 图形 模拟 人工智能 工程类 机器学习 系统工程 理论计算机科学 统计 数学 多样性(控制论) 操作系统
作者
Jingwei Ge,Jiawei Zhang,Cheng Chang,Yi Zhang,Danya Yao,Li Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 6186-6199 被引量:4
标识
DOI:10.1109/tits.2023.3347535
摘要

Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助橘色森林采纳,获得10
2秒前
2秒前
桐桐应助王威采纳,获得10
3秒前
深情安青应助花陵采纳,获得10
5秒前
5秒前
6秒前
小红花完成签到,获得积分20
6秒前
Philip发布了新的文献求助30
10秒前
10秒前
11秒前
Bailey发布了新的文献求助10
11秒前
杜世雍完成签到,获得积分10
11秒前
lf发布了新的文献求助10
11秒前
TenerifeSea发布了新的文献求助10
14秒前
橘色森林完成签到,获得积分10
14秒前
15秒前
香蕉觅云应助Philip采纳,获得30
16秒前
华仔应助傻傻的雅寒采纳,获得10
19秒前
alanbike完成签到,获得积分10
19秒前
广州小肥羊完成签到 ,获得积分10
20秒前
王威发布了新的文献求助10
20秒前
浮游应助不爱写论文采纳,获得10
22秒前
浮游应助不爱写论文采纳,获得10
22秒前
浮游应助不爱写论文采纳,获得10
22秒前
浮游应助不爱写论文采纳,获得10
22秒前
浮游应助不爱写论文采纳,获得10
22秒前
量子星尘发布了新的文献求助10
25秒前
善学以致用应助dreamsci采纳,获得10
25秒前
风趣雪一发布了新的文献求助10
25秒前
完美世界应助爱听歌笑寒采纳,获得10
28秒前
思源应助刀疤尤金采纳,获得10
28秒前
30秒前
TTTHANKS完成签到 ,获得积分10
31秒前
黄陈涛完成签到 ,获得积分10
32秒前
和谐蛋蛋完成签到,获得积分10
33秒前
SciGPT应助动听衬衫采纳,获得10
33秒前
34秒前
琪凯定理完成签到,获得积分10
34秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469866
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337422
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465272
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259