Task-Driven Controllable Scenario Generation Framework Based on AOG

计算机科学 任务(项目管理) 过程(计算) 马尔可夫过程 场景测试 马尔可夫链 驾驶模拟器 图形 模拟 人工智能 工程类 机器学习 系统工程 理论计算机科学 统计 数学 多样性(控制论) 操作系统
作者
Jingwei Ge,Jiawei Zhang,Cheng Chang,Yi Zhang,Danya Yao,Li Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 6186-6199 被引量:4
标识
DOI:10.1109/tits.2023.3347535
摘要

Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Jasper应助可爱花瓣采纳,获得10
1秒前
1秒前
ding应助Winfred采纳,获得10
1秒前
乐乐应助豆豆采纳,获得10
1秒前
无花果应助Saven采纳,获得10
1秒前
文艺访卉完成签到,获得积分10
1秒前
耀灵完成签到,获得积分10
2秒前
2秒前
llll发布了新的文献求助10
2秒前
jeronimo发布了新的文献求助10
2秒前
君子兰完成签到,获得积分10
3秒前
慕青应助pp采纳,获得10
3秒前
温馨发布了新的文献求助10
3秒前
王旭发布了新的文献求助10
5秒前
nn完成签到,获得积分10
5秒前
耀灵发布了新的文献求助30
5秒前
AFASF发布了新的文献求助10
6秒前
小困完成签到,获得积分20
6秒前
6秒前
8秒前
小航2025发布了新的文献求助10
8秒前
王欣发布了新的文献求助10
8秒前
Hello应助江渡采纳,获得10
9秒前
小蘑菇应助文献互助采纳,获得10
9秒前
9秒前
NexusExplorer应助个性凡阳采纳,获得10
10秒前
我是老大应助corner采纳,获得10
10秒前
FashionBoy应助通~采纳,获得10
11秒前
11秒前
12秒前
AFASF完成签到,获得积分10
12秒前
wuke完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
15秒前
15秒前
希望天下0贩的0应助木光采纳,获得10
16秒前
wuke发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Jean-Jacques Rousseau et Geneve 400
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155952
求助须知:如何正确求助?哪些是违规求助? 4351511
关于积分的说明 13549372
捐赠科研通 4194487
什么是DOI,文献DOI怎么找? 2300535
邀请新用户注册赠送积分活动 1300490
关于科研通互助平台的介绍 1245518