Task-Driven Controllable Scenario Generation Framework Based on AOG

计算机科学 任务(项目管理) 过程(计算) 马尔可夫过程 场景测试 马尔可夫链 驾驶模拟器 图形 模拟 人工智能 工程类 机器学习 系统工程 理论计算机科学 统计 操作系统 多样性(控制论) 数学
作者
Jingwei Ge,Jiawei Zhang,Cheng Chang,Yi Zhang,Danya Yao,Li Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tits.2023.3347535
摘要

Sampling, generation, and evaluation of scenarios are essential steps for intelligent testing of autonomous vehicles. Since uncertainty in driving behavior always leads to different occurrence frequencies of scenarios, we have to sample these scenarios in naturalistic datasets. Furthermore, a specified scenario needs to be further enriched and the driving behavior within it needs to be fully described to carry out generation in simulation systems. However, existing approaches generate scenarios randomly and uncontrollably, which makes them unable to precisely generate the specified scenarios. The driving behavior they describe is also memoryless and inflexible. To address the two issues, we propose a task-driven controllable scenario generation framework that can generate scenarios with the consideration of the driving behavior of Surrounding Vehicles (SVs) in a controllable manner. We first manually assign the driving behavior based on different testing tasks for all the considered vehicles. Then we expand the driving behavior temporally as the continuation and transition of several motion activities and generate the corresponding vehicle trajectories spatially. We adopt And-Or Graph (AOG) to model the transition between these motion activities. In contrast to the common memoryless Markov process, our framework generates driving behavior with continuity and driving memory. Finally, we evaluate our framework by generating lane-changing scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CCR发布了新的文献求助10
刚刚
su发布了新的文献求助10
2秒前
善学以致用应助钰c采纳,获得10
2秒前
Fundamental完成签到,获得积分20
3秒前
通~发布了新的文献求助10
3秒前
Akim应助阿屁屁猪采纳,获得10
3秒前
4秒前
细雨听风发布了新的文献求助10
4秒前
4秒前
英俊的小松鼠完成签到,获得积分10
4秒前
5秒前
7秒前
cc完成签到,获得积分20
7秒前
8秒前
8秒前
背后翠梅完成签到,获得积分10
8秒前
8秒前
涛涛发布了新的文献求助10
8秒前
lan完成签到,获得积分10
8秒前
皮皮完成签到 ,获得积分10
9秒前
ChiDaiOLD完成签到,获得积分10
9秒前
9秒前
情怀应助顺顺采纳,获得10
9秒前
Fundamental发布了新的文献求助10
11秒前
咩咩发布了新的文献求助10
11秒前
kingmin应助金鸡奖采纳,获得10
11秒前
喜悦蚂蚁完成签到,获得积分10
12秒前
赘婿应助拼搏向前采纳,获得10
12秒前
12秒前
12秒前
路十三完成签到 ,获得积分10
13秒前
Lucas应助Sophia采纳,获得10
14秒前
lan发布了新的文献求助10
14秒前
金容发布了新的文献求助10
14秒前
京阿尼发布了新的文献求助10
15秒前
好久不见发布了新的文献求助10
15秒前
小二郎应助轩辕德地采纳,获得10
15秒前
超级的飞飞完成签到,获得积分10
18秒前
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808