Dynamic constrained evolutionary optimization based on deep Q-network

计算机科学 人口 趋同(经济学) 数学优化 数学 人口学 社会学 经济 经济增长
作者
Zhengping Liang,Ruitai Yang,Jigang Wang,Ling Liu,Xiaoliang Ma,Zexuan Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123592-123592 被引量:11
标识
DOI:10.1016/j.eswa.2024.123592
摘要

Dynamic constrained optimization problems (DCOPs) are common and important optimization problems in real-world, which have great difficulty to solve. Dynamic constrained evolutionary algorithms (DCEAs) are widely used methods for solving DCOPs. However, existing DCEAs often struggle with convergence, particularly for DCOPs with drastic dynamic changes or intricate constraints. To address this issue, this paper proposes a novel DCEA called DCEA-DQN, which leverages the powerful perception and decision-making capabilities of Deep Q-Network (DQN). DCEA-DQN integrates two DQNs to enhance its performance. The first DQN is designed to adaptively respond to dynamic changes, enabling effective handling of DCOPs with various types and degrees of changes. It provides a high-quality re-initialized population for subsequent static optimization, resulting in faster and improved convergence. The second DQN is introduced to guide the mutation direction during offspring generation. It steers the population towards better feasible regions or directs it towards the optimal individual within the current feasible region. Moreover, a penalty mechanism is employed to handle constraints during offspring generation.To evaluate the performance of DCEA-DQN, comprehensive empirical studies are conducted using a new test suite called C-GMPB and a dynamic flexible job-shop scheduling problem. The experimental results, using two commonly used metrics EB and EO in the field of DCOPs, demonstrate that DCEA-DQN outperforms six state-of-the-art DCEAs and achieved optimal performance on 80% and 75% of all 24 test problems, respectively. The source code for DCEA-DQN is available at https://github.com/CIA-SZU/YRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
healer完成签到,获得积分10
刚刚
奋斗的南风关注了科研通微信公众号
刚刚
酷波er应助111采纳,获得10
刚刚
1秒前
1秒前
2秒前
2秒前
高大的老头完成签到,获得积分10
3秒前
3秒前
4秒前
蓝色斑马发布了新的文献求助10
4秒前
如约而至完成签到,获得积分10
5秒前
flh完成签到,获得积分10
5秒前
5秒前
5秒前
dslhxwlkm发布了新的文献求助10
6秒前
qiu发布了新的文献求助20
6秒前
6秒前
like发布了新的文献求助10
6秒前
7秒前
日富一日发布了新的文献求助10
7秒前
随便完成签到,获得积分10
7秒前
114514完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助30
9秒前
宇月幸成发布了新的文献求助10
9秒前
10秒前
10秒前
惔惔惔发布了新的文献求助10
10秒前
马子妍发布了新的文献求助10
11秒前
叮咚完成签到,获得积分10
11秒前
Owen应助汝桢采纳,获得10
11秒前
11秒前
12秒前
邱扬智发布了新的文献求助10
12秒前
冰火油条虾完成签到 ,获得积分10
12秒前
CodeCraft应助文献来来来采纳,获得10
12秒前
wang发布了新的文献求助10
13秒前
13秒前
kaworul发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894