Dynamic constrained evolutionary optimization based on deep Q-network

计算机科学 人口 趋同(经济学) 数学优化 数学 人口学 社会学 经济 经济增长
作者
Zhengping Liang,Ruitai Yang,Jigang Wang,Ling Liu,Xiaoliang Ma,Zexuan Zhu
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123592-123592 被引量:4
标识
DOI:10.1016/j.eswa.2024.123592
摘要

Dynamic constrained optimization problems (DCOPs) are common and important optimization problems in real-world, which have great difficulty to solve. Dynamic constrained evolutionary algorithms (DCEAs) are widely used methods for solving DCOPs. However, existing DCEAs often struggle with convergence, particularly for DCOPs with drastic dynamic changes or intricate constraints. To address this issue, this paper proposes a novel DCEA called DCEA-DQN, which leverages the powerful perception and decision-making capabilities of Deep Q-Network (DQN). DCEA-DQN integrates two DQNs to enhance its performance. The first DQN is designed to adaptively respond to dynamic changes, enabling effective handling of DCOPs with various types and degrees of changes. It provides a high-quality re-initialized population for subsequent static optimization, resulting in faster and improved convergence. The second DQN is introduced to guide the mutation direction during offspring generation. It steers the population towards better feasible regions or directs it towards the optimal individual within the current feasible region. Moreover, a penalty mechanism is employed to handle constraints during offspring generation.To evaluate the performance of DCEA-DQN, comprehensive empirical studies are conducted using a new test suite called C-GMPB and a dynamic flexible job-shop scheduling problem. The experimental results, using two commonly used metrics EB and EO in the field of DCOPs, demonstrate that DCEA-DQN outperforms six state-of-the-art DCEAs and achieved optimal performance on 80% and 75% of all 24 test problems, respectively. The source code for DCEA-DQN is available at https://github.com/CIA-SZU/YRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力生活的小柴完成签到,获得积分10
2秒前
3秒前
共享精神应助小倩倩加油采纳,获得10
3秒前
zty123发布了新的文献求助10
4秒前
Ck发布了新的文献求助10
4秒前
TOM发布了新的文献求助10
4秒前
Ava应助敏er好学采纳,获得10
7秒前
7秒前
双生客完成签到,获得积分20
8秒前
碧蓝皮卡丘完成签到,获得积分10
9秒前
11秒前
13秒前
15秒前
小鱼发布了新的文献求助10
16秒前
Amadeus发布了新的文献求助20
16秒前
17秒前
光电彭于晏完成签到,获得积分10
20秒前
hhhhhh发布了新的文献求助10
21秒前
22秒前
23秒前
斯文败类应助许12采纳,获得10
24秒前
24秒前
25秒前
常山赵紫龍完成签到,获得积分10
27秒前
28秒前
cocolu应助海不扬波采纳,获得10
29秒前
Akim应助也是难得取个名采纳,获得10
29秒前
30秒前
xiaoyu应助奥利哩哩采纳,获得10
33秒前
落寞的藏今完成签到 ,获得积分10
35秒前
35秒前
忧虑的远锋关注了科研通微信公众号
35秒前
36秒前
38秒前
敏er好学发布了新的文献求助10
38秒前
无名老大应助yyxx采纳,获得30
40秒前
40秒前
落寞的藏今关注了科研通微信公众号
40秒前
cocolu应助海不扬波采纳,获得10
41秒前
42秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624