亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamic constrained evolutionary optimization based on deep Q-network

计算机科学 人口 趋同(经济学) 数学优化 数学 人口学 社会学 经济 经济增长
作者
Zhengping Liang,Ruitai Yang,Jigang Wang,Ling Liu,Xiaoliang Ma,Zexuan Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123592-123592 被引量:4
标识
DOI:10.1016/j.eswa.2024.123592
摘要

Dynamic constrained optimization problems (DCOPs) are common and important optimization problems in real-world, which have great difficulty to solve. Dynamic constrained evolutionary algorithms (DCEAs) are widely used methods for solving DCOPs. However, existing DCEAs often struggle with convergence, particularly for DCOPs with drastic dynamic changes or intricate constraints. To address this issue, this paper proposes a novel DCEA called DCEA-DQN, which leverages the powerful perception and decision-making capabilities of Deep Q-Network (DQN). DCEA-DQN integrates two DQNs to enhance its performance. The first DQN is designed to adaptively respond to dynamic changes, enabling effective handling of DCOPs with various types and degrees of changes. It provides a high-quality re-initialized population for subsequent static optimization, resulting in faster and improved convergence. The second DQN is introduced to guide the mutation direction during offspring generation. It steers the population towards better feasible regions or directs it towards the optimal individual within the current feasible region. Moreover, a penalty mechanism is employed to handle constraints during offspring generation.To evaluate the performance of DCEA-DQN, comprehensive empirical studies are conducted using a new test suite called C-GMPB and a dynamic flexible job-shop scheduling problem. The experimental results, using two commonly used metrics EB and EO in the field of DCOPs, demonstrate that DCEA-DQN outperforms six state-of-the-art DCEAs and achieved optimal performance on 80% and 75% of all 24 test problems, respectively. The source code for DCEA-DQN is available at https://github.com/CIA-SZU/YRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lanxinge完成签到 ,获得积分10
13秒前
17秒前
cornelialkx发布了新的文献求助10
24秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
32秒前
32秒前
32秒前
32秒前
cornelialkx完成签到,获得积分20
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111240
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264