Dynamic constrained evolutionary optimization based on deep Q-network

计算机科学 人口 趋同(经济学) 数学优化 数学 经济增长 社会学 人口学 经济
作者
Zhengping Liang,Ruitai Yang,Jigang Wang,Ling Liu,Xiaoliang Ma,Zexuan Zhu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123592-123592 被引量:10
标识
DOI:10.1016/j.eswa.2024.123592
摘要

Dynamic constrained optimization problems (DCOPs) are common and important optimization problems in real-world, which have great difficulty to solve. Dynamic constrained evolutionary algorithms (DCEAs) are widely used methods for solving DCOPs. However, existing DCEAs often struggle with convergence, particularly for DCOPs with drastic dynamic changes or intricate constraints. To address this issue, this paper proposes a novel DCEA called DCEA-DQN, which leverages the powerful perception and decision-making capabilities of Deep Q-Network (DQN). DCEA-DQN integrates two DQNs to enhance its performance. The first DQN is designed to adaptively respond to dynamic changes, enabling effective handling of DCOPs with various types and degrees of changes. It provides a high-quality re-initialized population for subsequent static optimization, resulting in faster and improved convergence. The second DQN is introduced to guide the mutation direction during offspring generation. It steers the population towards better feasible regions or directs it towards the optimal individual within the current feasible region. Moreover, a penalty mechanism is employed to handle constraints during offspring generation.To evaluate the performance of DCEA-DQN, comprehensive empirical studies are conducted using a new test suite called C-GMPB and a dynamic flexible job-shop scheduling problem. The experimental results, using two commonly used metrics EB and EO in the field of DCOPs, demonstrate that DCEA-DQN outperforms six state-of-the-art DCEAs and achieved optimal performance on 80% and 75% of all 24 test problems, respectively. The source code for DCEA-DQN is available at https://github.com/CIA-SZU/YRT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily336699完成签到,获得积分10
刚刚
zph14204发布了新的文献求助10
刚刚
wanci应助fyn采纳,获得10
刚刚
思源应助godblessyou采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
呆萌如容完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
冷艳招牌应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得80
4秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
4秒前
lily336699发布了新的文献求助30
6秒前
hute完成签到 ,获得积分10
6秒前
6秒前
稳重一寡发布了新的文献求助10
6秒前
Scrow完成签到 ,获得积分10
7秒前
7秒前
帅气鹭洋发布了新的文献求助10
8秒前
9秒前
汉堡包应助john163采纳,获得10
9秒前
ww发布了新的文献求助10
10秒前
10秒前
11秒前
傲娇的觅翠完成签到,获得积分10
12秒前
赵赵a完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883732
求助须知:如何正确求助?哪些是违规求助? 4169161
关于积分的说明 12936110
捐赠科研通 3929503
什么是DOI,文献DOI怎么找? 2156155
邀请新用户注册赠送积分活动 1174556
关于科研通互助平台的介绍 1079303