Machine learning models developed and internally validated for predicting chronicity in pediatric immune thrombocytopenia

可解释性 随机森林 逻辑回归 接收机工作特性 医学 机器学习 支持向量机 人工智能 儿科 内科学 计算机科学
作者
Jingyao Ma,Chang Cui,Yongqiang Tang,Yu Hu,Shuyue Dong,Jialü Zhang,Xingjuan Xie,Jinxi Meng,Zhifa Wang,Wensheng Zhang,Zhenping Chen,Runhui Wu
出处
期刊:Journal of Thrombosis and Haemostasis [Wiley]
卷期号:22 (4): 1167-1178
标识
DOI:10.1016/j.jtha.2023.12.006
摘要

Abstract

Background

Primary immune thrombocytopenia (ITP) in children is typically self-limiting; however, 20–30% of patients may experience prolonged thrombocytopenia lasting over a year. The challenge is predicting chronicity to ensure personalized treatment approaches.

Objective

To address this issue, we developed and internally validated four machine learning (ML) models using demographic and immunological characteristics to predict the likelihood of chronicity.

Methods

The present study was conducted at Beijing Children's Hospital from June 2018 to December 2021, aiming to develop predictive models for determining the chronicity of pediatric ITP. Four ML models, based on logistic regression classifier, random forest classifier, eXtreme Gradient Boosting (XGBoost), and support vector machine, were employed. These models utilized a set of 16 variables including 14 immunological and 2 demographic predictors. The performance evaluation criteria included prediction accuracy, precision, recall, F1 score, and area under the ROC curve (AUC).

Results

Data were collected from 662 patients who were randomly assigned to either a training dataset or a testing dataset using a random number generator. Among them, 26.5% had chronic disease. All models performed well with AUC values ranging from 0.81 to 0.84, and XGBoost was selected for its highest AUC score and interpretability in constructing the predictive model. Age, Th17, Th17/Treg, TH1, and DNT were identified as significant predictors by the XGBoost algorithm.

Conclusion

We developed a precise predictive model for chronicity in pediatric ITP using ML during the initial phase. The XGBoost model achieved high predictive accuracy by utilizing individual patient clinical parameters and demonstrated commendable interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000完成签到 ,获得积分10
1秒前
机智跳跳糖完成签到,获得积分10
2秒前
yyu发布了新的文献求助10
2秒前
嘎嘎完成签到,获得积分20
2秒前
小星星发布了新的文献求助10
2秒前
小猪佩奇完成签到,获得积分10
3秒前
可爱的函函应助一如既往采纳,获得10
4秒前
安静的寒风完成签到,获得积分10
4秒前
4秒前
zzz发布了新的文献求助10
5秒前
5秒前
6秒前
慢慢发布了新的文献求助10
7秒前
8秒前
玻玻应助uulsj采纳,获得10
8秒前
8秒前
情怀应助zhy采纳,获得10
9秒前
10秒前
柠小檬c发布了新的文献求助10
10秒前
慧慧完成签到,获得积分10
10秒前
sorato完成签到,获得积分20
11秒前
小嘎发布了新的文献求助10
11秒前
科研通AI2S应助文献狗采纳,获得10
11秒前
12秒前
bhfhq完成签到,获得积分10
12秒前
13秒前
隐形曼青应助舒适的初雪采纳,获得10
13秒前
广州南发布了新的文献求助10
14秒前
chen完成签到 ,获得积分10
14秒前
15秒前
大模型应助直率的勒采纳,获得10
15秒前
15秒前
想毕业完成签到 ,获得积分10
15秒前
16秒前
彦希发布了新的文献求助10
16秒前
科研通AI2S应助lixm采纳,获得10
16秒前
17秒前
充电宝应助旦丁洋采纳,获得10
18秒前
Phi.Wang发布了新的文献求助10
19秒前
平常的无极完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866