Machine learning models developed and internally validated for predicting chronicity in pediatric immune thrombocytopenia

可解释性 随机森林 逻辑回归 接收机工作特性 医学 机器学习 支持向量机 人工智能 儿科 内科学 计算机科学
作者
Jingyao Ma,Chang Cui,Yongqiang Tang,Yu Hu,Shuyue Dong,Jialü Zhang,Xingjuan Xie,Jinxi Meng,Zhifa Wang,Wensheng Zhang,Zhenping Chen,Runhui Wu
出处
期刊:Journal of Thrombosis and Haemostasis [Elsevier BV]
卷期号:22 (4): 1167-1178 被引量:1
标识
DOI:10.1016/j.jtha.2023.12.006
摘要

Abstract

Background

Primary immune thrombocytopenia (ITP) in children is typically self-limiting; however, 20–30% of patients may experience prolonged thrombocytopenia lasting over a year. The challenge is predicting chronicity to ensure personalized treatment approaches.

Objective

To address this issue, we developed and internally validated four machine learning (ML) models using demographic and immunological characteristics to predict the likelihood of chronicity.

Methods

The present study was conducted at Beijing Children's Hospital from June 2018 to December 2021, aiming to develop predictive models for determining the chronicity of pediatric ITP. Four ML models, based on logistic regression classifier, random forest classifier, eXtreme Gradient Boosting (XGBoost), and support vector machine, were employed. These models utilized a set of 16 variables including 14 immunological and 2 demographic predictors. The performance evaluation criteria included prediction accuracy, precision, recall, F1 score, and area under the ROC curve (AUC).

Results

Data were collected from 662 patients who were randomly assigned to either a training dataset or a testing dataset using a random number generator. Among them, 26.5% had chronic disease. All models performed well with AUC values ranging from 0.81 to 0.84, and XGBoost was selected for its highest AUC score and interpretability in constructing the predictive model. Age, Th17, Th17/Treg, TH1, and DNT were identified as significant predictors by the XGBoost algorithm.

Conclusion

We developed a precise predictive model for chronicity in pediatric ITP using ML during the initial phase. The XGBoost model achieved high predictive accuracy by utilizing individual patient clinical parameters and demonstrated commendable interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rondab应助xcc采纳,获得10
1秒前
1秒前
1秒前
John完成签到 ,获得积分10
3秒前
3秒前
5秒前
5秒前
叶叶发布了新的文献求助10
6秒前
7秒前
wxq完成签到,获得积分10
7秒前
糊涂一时完成签到 ,获得积分10
9秒前
刘鹏程完成签到,获得积分10
10秒前
Lin完成签到 ,获得积分10
11秒前
在水一方应助噜噜晓采纳,获得10
11秒前
AlwaysKim发布了新的文献求助10
12秒前
完美世界应助坚强白凝采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
热切菩萨应助科研通管家采纳,获得50
13秒前
热切菩萨应助科研通管家采纳,获得10
13秒前
13秒前
orixero应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
mwh完成签到 ,获得积分10
15秒前
二月完成签到,获得积分10
17秒前
yys完成签到,获得积分10
20秒前
怡然凌柏完成签到 ,获得积分10
20秒前
坚强白凝完成签到,获得积分10
20秒前
炙热的念柏应助子苇采纳,获得10
21秒前
22秒前
18726352502完成签到,获得积分10
23秒前
沉淀完成签到 ,获得积分20
23秒前
叶叶完成签到,获得积分20
25秒前
yys10l完成签到,获得积分10
25秒前
暮然发布了新的文献求助10
25秒前
栖木木完成签到 ,获得积分10
25秒前
乐乐应助李白采纳,获得10
25秒前
March完成签到,获得积分10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382