已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的面包完成签到,获得积分10
刚刚
苹果惠完成签到,获得积分10
刚刚
2秒前
jokerhoney完成签到,获得积分0
5秒前
8秒前
8秒前
11秒前
12秒前
14秒前
小小完成签到 ,获得积分10
16秒前
yanxi发布了新的文献求助10
17秒前
泥娃娃完成签到,获得积分10
17秒前
李健的小迷弟应助susu采纳,获得30
20秒前
不安青牛应助闪闪的熠彤采纳,获得20
22秒前
几一昂完成签到 ,获得积分10
22秒前
NexusExplorer应助英勇的天奇采纳,获得10
23秒前
HXY给HXY的求助进行了留言
26秒前
26秒前
顾矜应助Dopamine采纳,获得10
30秒前
yanxi完成签到,获得积分10
31秒前
32秒前
33秒前
33秒前
QJ0发布了新的文献求助10
38秒前
bless发布了新的文献求助10
38秒前
隐形曼青应助大大怪将军采纳,获得10
38秒前
38秒前
41秒前
大大怪将军完成签到,获得积分10
43秒前
喜悦的小土豆完成签到 ,获得积分10
45秒前
还是速度点完成签到,获得积分10
45秒前
49秒前
不安青牛应助淡然的念珍采纳,获得10
53秒前
疯狂的寻琴完成签到 ,获得积分10
53秒前
55秒前
无私的含海完成签到,获得积分10
56秒前
59秒前
59秒前
59秒前
科研通AI6应助黑暗与黎明采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469870
求助须知:如何正确求助?哪些是违规求助? 4572878
关于积分的说明 14337487
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465296
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259