AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱归尘发布了新的文献求助10
刚刚
上官若男应助天边外采纳,获得10
1秒前
2秒前
3秒前
111发布了新的文献求助100
6秒前
睡醒了发布了新的文献求助30
7秒前
7秒前
7秒前
橙银完成签到,获得积分10
7秒前
清爽代芹完成签到,获得积分10
8秒前
小U发布了新的文献求助10
8秒前
9秒前
zz完成签到,获得积分10
9秒前
an完成签到,获得积分20
9秒前
张雯思发布了新的文献求助10
10秒前
徐州檀完成签到 ,获得积分10
10秒前
爆米花应助li采纳,获得10
11秒前
罗氏集团发布了新的文献求助10
11秒前
hhr完成签到 ,获得积分10
11秒前
halo发布了新的文献求助10
12秒前
Moiraisonline完成签到,获得积分10
13秒前
浅沫juanjuan完成签到 ,获得积分10
15秒前
打打应助an采纳,获得10
15秒前
16秒前
Murphy_H完成签到,获得积分10
16秒前
16秒前
17秒前
anan完成签到 ,获得积分10
17秒前
在水一方应助Drogoo采纳,获得10
18秒前
Akim应助Drogoo采纳,获得10
18秒前
共享精神应助Drogoo采纳,获得10
18秒前
在水一方应助Drogoo采纳,获得10
18秒前
Jasper应助Drogoo采纳,获得10
18秒前
搜集达人应助Drogoo采纳,获得10
18秒前
丘比特应助Drogoo采纳,获得10
18秒前
18秒前
程荷芬发布了新的文献求助10
20秒前
爱吃巧克力的草莓完成签到 ,获得积分10
20秒前
泡泡发布了新的文献求助10
20秒前
fieri发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075