AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚无完成签到,获得积分10
1秒前
1秒前
xingzai101完成签到,获得积分10
1秒前
慕青应助陈昇采纳,获得10
3秒前
3秒前
mu发布了新的文献求助10
4秒前
4秒前
refraincc发布了新的文献求助10
5秒前
6秒前
兰彻发布了新的文献求助10
6秒前
yuhangli完成签到,获得积分20
8秒前
yuhangli发布了新的文献求助10
10秒前
乐乐应助goofs采纳,获得10
11秒前
refraincc完成签到,获得积分10
12秒前
13秒前
逻辑猫完成签到,获得积分10
13秒前
优雅狗发布了新的文献求助10
14秒前
bbr完成签到 ,获得积分10
17秒前
Jasper应助san采纳,获得10
18秒前
nnkyou完成签到,获得积分20
18秒前
搜集达人应助日行三万里采纳,获得10
19秒前
21秒前
研友_Z33EGZ发布了新的文献求助50
21秒前
整齐南莲发布了新的文献求助10
21秒前
22秒前
23秒前
24秒前
25秒前
barwin发布了新的文献求助10
26秒前
26秒前
27秒前
耿继生发布了新的文献求助10
28秒前
郝好完成签到 ,获得积分10
28秒前
29秒前
29秒前
jiusi发布了新的文献求助10
29秒前
29秒前
Zll完成签到,获得积分10
30秒前
hehe发布了新的文献求助10
31秒前
清秀以彤发布了新的文献求助10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133336
求助须知:如何正确求助?哪些是违规求助? 2784459
关于积分的说明 7766779
捐赠科研通 2439644
什么是DOI,文献DOI怎么找? 1296912
科研通“疑难数据库(出版商)”最低求助积分说明 624809
版权声明 600771