亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
一只发布了新的文献求助10
11秒前
13秒前
欣欣子完成签到,获得积分10
13秒前
yuyiyi完成签到,获得积分10
16秒前
sunstar完成签到,获得积分20
17秒前
19秒前
susu_完成签到,获得积分10
20秒前
yxl完成签到,获得积分10
20秒前
可耐的盈完成签到,获得积分10
24秒前
27秒前
绿毛水怪完成签到,获得积分10
28秒前
28秒前
在水一方应助搞什么科研采纳,获得10
29秒前
lsc完成签到,获得积分10
31秒前
隐形曼青应助白华苍松采纳,获得10
33秒前
小fei完成签到,获得积分10
35秒前
36秒前
麻辣薯条完成签到,获得积分10
38秒前
时尚身影完成签到,获得积分10
41秒前
an慧儿发布了新的文献求助10
43秒前
45秒前
流苏完成签到,获得积分0
45秒前
流苏2完成签到,获得积分10
49秒前
57秒前
量子星尘发布了新的文献求助10
1分钟前
徐per爱豆完成签到 ,获得积分10
1分钟前
1分钟前
渺渺未来星完成签到 ,获得积分20
1分钟前
1分钟前
可乐完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
Andrewlabeth完成签到,获得积分10
2分钟前
2分钟前
菠萝包完成签到 ,获得积分10
2分钟前
2分钟前
an慧儿发布了新的文献求助10
2分钟前
连安阳完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509496
求助须知:如何正确求助?哪些是违规求助? 4604404
关于积分的说明 14489722
捐赠科研通 4539189
什么是DOI,文献DOI怎么找? 2487356
邀请新用户注册赠送积分活动 1469804
关于科研通互助平台的介绍 1442032