AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mklwxhlsd完成签到,获得积分10
刚刚
十一发布了新的文献求助10
刚刚
谦让的傲芙完成签到,获得积分10
1秒前
陶醉小笼包完成签到 ,获得积分10
1秒前
Yang完成签到,获得积分10
1秒前
1秒前
wmt完成签到,获得积分10
1秒前
Esther完成签到 ,获得积分10
2秒前
修越完成签到,获得积分20
2秒前
浩浩桑发布了新的文献求助10
3秒前
3秒前
rwj发布了新的文献求助10
3秒前
fighting完成签到 ,获得积分10
3秒前
搜集达人应助CT采纳,获得10
3秒前
4秒前
果实发布了新的文献求助10
4秒前
fan完成签到,获得积分20
4秒前
阿白完成签到 ,获得积分10
5秒前
小轩窗zst完成签到,获得积分10
5秒前
王川完成签到,获得积分10
5秒前
一方完成签到,获得积分10
5秒前
aqaqaqa发布了新的文献求助10
5秒前
英姑应助大月儿采纳,获得10
6秒前
灵巧的以亦完成签到,获得积分10
6秒前
6秒前
安沁完成签到,获得积分10
7秒前
April完成签到,获得积分10
9秒前
pp发布了新的文献求助10
9秒前
清脆惜寒发布了新的文献求助10
9秒前
eric888应助果实采纳,获得30
9秒前
Goblin完成签到 ,获得积分10
9秒前
姚姚完成签到,获得积分10
10秒前
十一完成签到,获得积分10
10秒前
heypee完成签到,获得积分10
10秒前
wllzwh发布了新的文献求助10
10秒前
舒心的青亦完成签到 ,获得积分10
10秒前
太吾墨完成签到,获得积分0
11秒前
所所应助JCX采纳,获得10
11秒前
勤奋紫青完成签到,获得积分20
11秒前
英俊的铭应助sunliying采纳,获得30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723