已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马嘉祺超绝鸡肉线完成签到,获得积分10
1秒前
2秒前
说书人完成签到 ,获得积分10
2秒前
nadia发布了新的文献求助10
6秒前
Owen应助April_ff采纳,获得10
8秒前
9秒前
10秒前
11秒前
12秒前
Keeper发布了新的文献求助10
16秒前
BBBBBlue先森应助huangfan采纳,获得10
17秒前
汉堡包应助小小鱼采纳,获得10
21秒前
22秒前
kentonchow应助纯真的鸿涛采纳,获得10
22秒前
22秒前
啊啊啊啊关注了科研通微信公众号
24秒前
共享精神应助小梨子采纳,获得10
25秒前
科研通AI2S应助Meng采纳,获得10
26秒前
NLJY发布了新的文献求助10
29秒前
温暖的纲完成签到,获得积分10
29秒前
wcx完成签到,获得积分10
32秒前
乔沃维奇发布了新的文献求助10
33秒前
杭谷波发布了新的文献求助10
34秒前
34秒前
34秒前
jasonjiang完成签到 ,获得积分0
36秒前
33完成签到 ,获得积分10
37秒前
38秒前
啊啊啊啊发布了新的文献求助10
39秒前
健康的代芙完成签到,获得积分10
39秒前
研途发布了新的文献求助10
40秒前
nadia完成签到,获得积分10
43秒前
社会主义接班人完成签到 ,获得积分10
44秒前
科研通AI6应助陳LF采纳,获得10
46秒前
gqq完成签到 ,获得积分10
48秒前
研途完成签到,获得积分10
51秒前
杨梦圆完成签到 ,获得积分10
51秒前
杭谷波发布了新的文献求助10
52秒前
52秒前
5_羟色胺完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356035
求助须知:如何正确求助?哪些是违规求助? 4487840
关于积分的说明 13971200
捐赠科研通 4388654
什么是DOI,文献DOI怎么找? 2411178
邀请新用户注册赠送积分活动 1403722
关于科研通互助平台的介绍 1377408