AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cunese完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
wsy发布了新的文献求助10
3秒前
zhengriqian发布了新的文献求助10
3秒前
共享精神应助义气的青枫采纳,获得10
3秒前
bt4567发布了新的文献求助10
3秒前
3秒前
yuisl完成签到,获得积分10
4秒前
4秒前
内向灵凡发布了新的文献求助10
4秒前
rei402完成签到,获得积分20
5秒前
xuxingjie发布了新的文献求助10
5秒前
wf发布了新的文献求助10
5秒前
Sea_U发布了新的文献求助10
5秒前
lifan完成签到,获得积分10
6秒前
英俊的铭应助qwwee采纳,获得10
7秒前
4444发布了新的文献求助10
7秒前
英姑应助时尚的紫山采纳,获得10
7秒前
7秒前
8秒前
甜甜的幼珊完成签到,获得积分10
8秒前
吃人不眨眼应助跑快点采纳,获得20
8秒前
9秒前
大小米发布了新的文献求助30
9秒前
hyd1640发布了新的文献求助200
11秒前
sy发布了新的文献求助10
11秒前
rei402发布了新的文献求助10
11秒前
小老鼠完成签到 ,获得积分10
12秒前
我不爱池鱼应助果冻采纳,获得10
12秒前
12秒前
FashionBoy应助嘿嘿嘿采纳,获得10
13秒前
13秒前
13秒前
丘比特应助纽玛采纳,获得10
13秒前
mw完成签到,获得积分10
13秒前
慢慢完成签到,获得积分10
15秒前
SZY完成签到 ,获得积分10
15秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581109
求助须知:如何正确求助?哪些是违规求助? 4665690
关于积分的说明 14757767
捐赠科研通 4607511
什么是DOI,文献DOI怎么找? 2528260
邀请新用户注册赠送积分活动 1497575
关于科研通互助平台的介绍 1466462