AI-based predictive biomarker discovery via contrastive learning retrospectively improves clinical trial outcome

结果(博弈论) 生物标志物发现 生物标志物 临床试验 人工智能 计算机科学 医学 内科学 蛋白质组学 经济 生物 生物化学 基因 数理经济学
作者
Gustavo Arango-Argoty,Damián E. Bikiel,Gerald J. Sun,Elly Kipkogei,Kaitlin M. Smith,Sebastian Carrasco Pro,Etai Jacob
出处
期刊:Cold Spring Harbor Laboratory - medRxiv 被引量:1
标识
DOI:10.1101/2024.01.31.24302104
摘要

ABSTRACT Modern clinical trials can capture tens of thousands of clinicogenomic measurements per individual. Discovering predictive biomarkers, as opposed to prognostic markers, is challenging when using manual approaches. To address this, we present an automated neural network framework based on contrastive learning—a machine learning approach that involves training a model to distinguish between similar and dissimilar inputs. We have named this framework the Predictive Biomarker Modeling Framework (PBMF). This general-purpose framework explores potential predictive biomarkers in a systematic and unbiased manner, as demonstrated in simulated “ground truth” synthetic scenarios resembling clinical trials, well-established clinical datasets for survival analysis, real-world data, and clinical trials for bladder, kidney, and lung cancer. Applied retrospectively to real clinicogenomic data sets, particularly for the complex task of discovering predictive biomarkers in immunooncology (IO), our algorithm successfully found biomarkers that identify IO-treated individuals who survive longer than those treated with other therapies. In a retrospective analysis, we demonstrated how our framework could have contributed to a phase 3 clinical trial ( NCT02008227 ) by uncovering a predictive biomarker based solely on early study data. Patients identified with this predictive biomarker had a 15% improvement in survival risk, as compared to those of the original trial. This improvement was achieved with a simple, interpretable decision tree generated via PBMF knowledge distillation. Our framework additionally identified potential predictive biomarkers for two other phase 3 clinical trials ( NCT01668784 , NCT02302807 ) by utilizing single-arm studies with synthetic control arms and identified predictive biomarkers with at least 10% improvement in survival risk. The PBMF offers a broad, rapid, and robust approach to inform biomarker strategy, providing actionable outcomes for clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小胖子完成签到 ,获得积分10
1秒前
Dmx完成签到,获得积分10
2秒前
烛黎发布了新的文献求助10
2秒前
陈梓锋完成签到 ,获得积分10
2秒前
池haojie发布了新的文献求助30
2秒前
bless完成签到,获得积分10
2秒前
斧王应助欢喜的跳跳糖采纳,获得10
3秒前
海阔天空发布了新的文献求助10
3秒前
华凯发布了新的文献求助10
3秒前
overfly完成签到,获得积分20
3秒前
linliqing完成签到,获得积分10
3秒前
3秒前
亦玉发布了新的文献求助10
4秒前
ninomae完成签到 ,获得积分10
4秒前
yy发布了新的文献求助150
4秒前
冷冷子发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
自信南霜完成签到 ,获得积分10
5秒前
流沙无言完成签到 ,获得积分10
5秒前
mmain发布了新的文献求助10
5秒前
uil发布了新的文献求助10
5秒前
脑洞疼应助叶子姑凉采纳,获得10
5秒前
5秒前
陈昇发布了新的文献求助30
6秒前
呐呐呐完成签到,获得积分10
6秒前
追光发布了新的文献求助10
6秒前
搜集达人应助贪玩若剑采纳,获得10
6秒前
醉熏的皓轩完成签到,获得积分10
6秒前
澄桦完成签到,获得积分10
7秒前
平淡冰蝶关注了科研通微信公众号
7秒前
66完成签到 ,获得积分10
7秒前
spinor完成签到,获得积分10
7秒前
传奇3应助积极的糖豆采纳,获得10
7秒前
7秒前
大模型应助幸福鞯采纳,获得10
7秒前
7秒前
Amy完成签到 ,获得积分10
8秒前
liuxch5完成签到,获得积分10
8秒前
转身完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5433638
求助须知:如何正确求助?哪些是违规求助? 4545984
关于积分的说明 14200351
捐赠科研通 4465899
什么是DOI,文献DOI怎么找? 2447688
邀请新用户注册赠送积分活动 1438812
关于科研通互助平台的介绍 1415783