Machine learning-based predictive model for abdominal diseases using physical examination datasets

医学 胆囊 体格检查 腹部超声检查 超声波 内科学 放射科 肾脏疾病 血压 超声科
作者
Chen Wei,Yujie Zhang,Weili Wu,Hui Yang,Wenxiu Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108249-108249
标识
DOI:10.1016/j.compbiomed.2024.108249
摘要

Abdominal ultrasound is a key non-invasive imaging method for diagnosing liver, kidney, and gallbladder diseases, despite its clinical significance, not all individuals can undergo abdominal ultrasonography during routine health check-ups due to limitations in equipment, cost, and time. This study aims to use basic physical examination data to predict the risk of diseases of the liver, kidney, and gallbladder that can be diagnosed via abdominal ultrasound. Basic physical examination data contain gender, age, height, weight, BMI, pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, triglycerides, fasting blood glucose (FBG), and uric acid—we established seven single-label predictive models and one multi-label predictive model. These models were specifically designed to predict a range of abdominal diseases. The single-label models, utilizing the XGBoost algorithm, targeted diseases such as fatty liver (with an Area Under the Curve (AUC) of 0.9344), liver deposits (AUC: 0.8221), liver cysts (AUC: 0.7928), gallbladder polyps (AUC: 0.7508), kidney stones (AUC: 0.7853), kidney cysts (AUC: 0.8241), and kidney crystals (AUC: 0.7536). Furthermore, a comprehensive multi-label model, capable of predicting multiple conditions simultaneously, was established by FCN and achieved an AUC of 0.6344. We conducted interpretability analysis on these models to enhance their understanding and applicability in clinical settings. The insights gained from this analysis are crucial for the development of targeted disease prevention strategies. This study represents a significant advancement in utilizing physical examination data to predict ultrasound results, offering a novel approach to early diagnosis and prevention of abdominal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助天源采纳,获得10
刚刚
HHW发布了新的文献求助10
刚刚
英俊的铭应助Jenna采纳,获得10
刚刚
未晞完成签到,获得积分10
1秒前
1秒前
吕小布发布了新的文献求助10
2秒前
小炸发布了新的文献求助10
3秒前
天熙发布了新的文献求助10
3秒前
4秒前
passionate完成签到,获得积分10
4秒前
蓝莓酸奶发布了新的文献求助10
4秒前
善学以致用应助心砚采纳,获得10
4秒前
lili487发布了新的文献求助10
5秒前
FashionBoy应助Willing采纳,获得10
5秒前
6秒前
htmy完成签到,获得积分10
6秒前
GCY发布了新的文献求助20
7秒前
缓慢的念云完成签到,获得积分10
7秒前
黄花发布了新的文献求助10
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
9秒前
9秒前
单薄天蓉应助balalal采纳,获得10
10秒前
39hpl完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
12秒前
13秒前
甜甜的莺关注了科研通微信公众号
13秒前
小费发布了新的文献求助30
14秒前
15秒前
阿May完成签到 ,获得积分10
15秒前
15秒前
急求大佬帮助的科研小白完成签到,获得积分10
15秒前
16秒前
xuxu发布了新的文献求助10
16秒前
蓝莓酸奶完成签到,获得积分10
16秒前
xx发布了新的文献求助10
16秒前
ru完成签到 ,获得积分10
17秒前
高分求助中
Effect of reactor temperature on FCC yield 1900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Mesopotamian Divination Texts: Conversing with the Gods 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3285993
求助须知:如何正确求助?哪些是违规求助? 2923267
关于积分的说明 8414539
捐赠科研通 2594686
什么是DOI,文献DOI怎么找? 1414866
科研通“疑难数据库(出版商)”最低求助积分说明 658954
邀请新用户注册赠送积分活动 640909