Machine learning-based predictive model for abdominal diseases using physical examination datasets

医学 胆囊 体格检查 腹部超声检查 超声波 内科学 放射科 肾脏疾病 血压 超声科
作者
Chen Wei,Yujie Zhang,Weili Wu,Hui Yang,Wenxiu Huang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:173: 108249-108249
标识
DOI:10.1016/j.compbiomed.2024.108249
摘要

Abdominal ultrasound is a key non-invasive imaging method for diagnosing liver, kidney, and gallbladder diseases, despite its clinical significance, not all individuals can undergo abdominal ultrasonography during routine health check-ups due to limitations in equipment, cost, and time. This study aims to use basic physical examination data to predict the risk of diseases of the liver, kidney, and gallbladder that can be diagnosed via abdominal ultrasound. Basic physical examination data contain gender, age, height, weight, BMI, pulse, systolic blood pressure (SBP), diastolic blood pressure (DBP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), total cholesterol, triglycerides, fasting blood glucose (FBG), and uric acid—we established seven single-label predictive models and one multi-label predictive model. These models were specifically designed to predict a range of abdominal diseases. The single-label models, utilizing the XGBoost algorithm, targeted diseases such as fatty liver (with an Area Under the Curve (AUC) of 0.9344), liver deposits (AUC: 0.8221), liver cysts (AUC: 0.7928), gallbladder polyps (AUC: 0.7508), kidney stones (AUC: 0.7853), kidney cysts (AUC: 0.8241), and kidney crystals (AUC: 0.7536). Furthermore, a comprehensive multi-label model, capable of predicting multiple conditions simultaneously, was established by FCN and achieved an AUC of 0.6344. We conducted interpretability analysis on these models to enhance their understanding and applicability in clinical settings. The insights gained from this analysis are crucial for the development of targeted disease prevention strategies. This study represents a significant advancement in utilizing physical examination data to predict ultrasound results, offering a novel approach to early diagnosis and prevention of abdominal diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叁壹粑粑完成签到,获得积分10
1秒前
酷酷碧完成签到,获得积分10
1秒前
2秒前
磕盐民工完成签到,获得积分10
3秒前
3秒前
忘羡222发布了新的文献求助20
3秒前
我是老大应助TT采纳,获得10
5秒前
5秒前
5秒前
雪鸽鸽完成签到,获得积分10
6秒前
完美世界应助开心青旋采纳,获得10
6秒前
LD完成签到 ,获得积分10
8秒前
xjy完成签到 ,获得积分10
8秒前
qzaima完成签到,获得积分10
8秒前
9秒前
xueshufengbujue完成签到,获得积分10
9秒前
楼寒天发布了新的文献求助10
9秒前
10秒前
科研通AI5应助111111111采纳,获得10
11秒前
11秒前
sunsunsun完成签到,获得积分10
11秒前
哎嘤斯坦完成签到,获得积分10
13秒前
13秒前
sweetbearm应助潦草采纳,获得10
14秒前
sunsunsun发布了新的文献求助10
14秒前
酷波er应助Mars采纳,获得10
15秒前
迪士尼在逃后母完成签到,获得积分10
15秒前
15秒前
我是老大应助su采纳,获得10
16秒前
hhh发布了新的文献求助10
17秒前
18秒前
科研通AI5应助魏伯安采纳,获得10
19秒前
19秒前
神可馨完成签到 ,获得积分10
20秒前
Hangerli发布了新的文献求助20
20秒前
HealthyCH完成签到,获得积分10
20秒前
li完成签到,获得积分10
21秒前
22秒前
ononon发布了新的文献求助10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824