Accelerating redox kinetics of sulfurized polyacrylonitrile nanosheets by trace doping of element

聚丙烯腈 动力学 氧化还原 跟踪(心理语言学) 微量元素 兴奋剂 材料科学 化学工程 化学 无机化学 冶金 复合材料 工程类 聚合物 哲学 物理 量子力学 光电子学 语言学
作者
Ke Wang,Teng Zhao,Yuhao Liu,Tianyang Yu,Guoshuai Chen,Wangming Tang,Li Li,Feng Wu,Renjie Chen
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:487: 150300-150300 被引量:10
标识
DOI:10.1016/j.cej.2024.150300
摘要

"Solid-solid" conversion mechanism of sulfurized polyacrylonitrile (SPAN) could eliminate the "shuttle effect" of polysulfides intermediate in LiS batteries, but it leads to poor redox reaction kinetics. Herein, traces of high conductivity elements Se and Te are doped in two-dimensional SPAN nanosheets (NS) by co-heating method. This synergistic effect enhances the conductivity of SPAN while affording a larger contact area with the electrolyte and shortening the electron/ion transport path. As a result, both the energy barrier for redox reaction and polarization for battery are decreased. At a high current density of 3 A g−1, Te0.052S0.948PAN NS and Se0.071S0.929PAN NS exhibit significantly enhanced discharge capacities of 485 mA h g−1composite and 457 mA h g−1composite, respectively, while SPAN nanoparticles (NP) only delivers a capacity of 417 mA h g−1composite. At 0.2 A g−1 current density, the capacity retention rates of Te0.052S0.948PAN NS and Se0.071S0.929PAN NS are 92.20 % and 56.10 % after 200 cycles, respectively, both higher than the 40.10 % of SPAN NP. When the loading amount is further increased, Te0.052S0.948PAN NS and Se0.071S0.929PAN NS still maintain excellent electrochemical performance. In-situ Raman and XPS analysis confirms the reversible breaking and formation of CS/SS bonds during the first cycle. Additionally, XPS and SEM analysis after 100 cycles demonstrate the stable nanostructure and molecular structure of Se0.071S0.929PAN NS and Te0.052S0.948PAN NS throughout the cycling process. These results herald a new approach to high redox kinetics of SPAN by the synergistic effect of elements doping and nanoscale modulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助QW采纳,获得30
刚刚
水牛完成签到,获得积分10
刚刚
1秒前
逃逸艺术家完成签到,获得积分20
1秒前
1秒前
海绵发布了新的文献求助10
2秒前
霍清官完成签到,获得积分10
2秒前
飞fei发布了新的文献求助20
2秒前
tyh330011发布了新的文献求助10
2秒前
zhangjin2969发布了新的文献求助10
2秒前
所所应助lalalaaaa采纳,获得10
3秒前
3秒前
3秒前
hymmm发布了新的文献求助10
3秒前
稳稳稳发布了新的文献求助10
4秒前
SciGPT应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
尉迟希望应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
DijiaXu应助科研通管家采纳,获得150
5秒前
所所应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
田様应助科研通管家采纳,获得10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得30
5秒前
sleepingfish应助科研通管家采纳,获得20
5秒前
酷波er应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助自由青柏采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095640
求助须知:如何正确求助?哪些是违规求助? 4308615
关于积分的说明 13424929
捐赠科研通 4135474
什么是DOI,文献DOI怎么找? 2265586
邀请新用户注册赠送积分活动 1268936
关于科研通互助平台的介绍 1204972