亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the Alignment of Large Language Models With Human Values for Mental Health Integration: Cross-Sectional Study Using Schwartz’s Theory of Basic Values

心理学 价值(数学) 社会心理学 人口 心理健康 人口学 精神科 社会学 统计 数学
作者
Dorit Hadar-Shoval,Kfir Asraf,Yonathan Mizrachi,Yuval Haber,Zohar Elyoseph
出处
期刊:JMIR mental health [JMIR Publications]
卷期号:11: e55988-e55988 被引量:4
标识
DOI:10.2196/55988
摘要

Background Large language models (LLMs) hold potential for mental health applications. However, their opaque alignment processes may embed biases that shape problematic perspectives. Evaluating the values embedded within LLMs that guide their decision-making have ethical importance. Schwartz’s theory of basic values (STBV) provides a framework for quantifying cultural value orientations and has shown utility for examining values in mental health contexts, including cultural, diagnostic, and therapist-client dynamics. Objective This study aimed to (1) evaluate whether the STBV can measure value-like constructs within leading LLMs and (2) determine whether LLMs exhibit distinct value-like patterns from humans and each other. Methods In total, 4 LLMs (Bard, Claude 2, Generative Pretrained Transformer [GPT]-3.5, GPT-4) were anthropomorphized and instructed to complete the Portrait Values Questionnaire—Revised (PVQ-RR) to assess value-like constructs. Their responses over 10 trials were analyzed for reliability and validity. To benchmark the LLMs’ value profiles, their results were compared to published data from a diverse sample of 53,472 individuals across 49 nations who had completed the PVQ-RR. This allowed us to assess whether the LLMs diverged from established human value patterns across cultural groups. Value profiles were also compared between models via statistical tests. Results The PVQ-RR showed good reliability and validity for quantifying value-like infrastructure within the LLMs. However, substantial divergence emerged between the LLMs’ value profiles and population data. The models lacked consensus and exhibited distinct motivational biases, reflecting opaque alignment processes. For example, all models prioritized universalism and self-direction, while de-emphasizing achievement, power, and security relative to humans. Successful discriminant analysis differentiated the 4 LLMs’ distinct value profiles. Further examination found the biased value profiles strongly predicted the LLMs’ responses when presented with mental health dilemmas requiring choosing between opposing values. This provided further validation for the models embedding distinct motivational value-like constructs that shape their decision-making. Conclusions This study leveraged the STBV to map the motivational value-like infrastructure underpinning leading LLMs. Although the study demonstrated the STBV can effectively characterize value-like infrastructure within LLMs, substantial divergence from human values raises ethical concerns about aligning these models with mental health applications. The biases toward certain cultural value sets pose risks if integrated without proper safeguards. For example, prioritizing universalism could promote unconditional acceptance even when clinically unwise. Furthermore, the differences between the LLMs underscore the need to standardize alignment processes to capture true cultural diversity. Thus, any responsible integration of LLMs into mental health care must account for their embedded biases and motivation mismatches to ensure equitable delivery across diverse populations. Achieving this will require transparency and refinement of alignment techniques to instill comprehensive human values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黎明完成签到,获得积分10
5秒前
零_完成签到,获得积分10
6秒前
负责代珊完成签到,获得积分10
7秒前
SciGPT应助123采纳,获得10
7秒前
7秒前
黎明发布了新的文献求助10
9秒前
研友_VZG7GZ应助怦然心动采纳,获得10
10秒前
领导范儿应助王老裂采纳,获得80
11秒前
13秒前
brwen完成签到,获得积分10
16秒前
dax大雄完成签到 ,获得积分10
20秒前
23秒前
25秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得30
27秒前
共享精神应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
ding应助科研通管家采纳,获得10
27秒前
浮游应助科研通管家采纳,获得10
27秒前
Hello应助科研通管家采纳,获得10
27秒前
ZZZ完成签到,获得积分10
30秒前
羊羊羊发布了新的文献求助10
30秒前
歪歪吸发布了新的文献求助10
30秒前
31秒前
xiaokun发布了新的文献求助10
31秒前
123发布了新的文献求助10
31秒前
王老裂发布了新的文献求助80
36秒前
歪歪吸完成签到,获得积分10
37秒前
北一君完成签到,获得积分10
37秒前
何靖馥琳完成签到,获得积分10
42秒前
丘比特应助库里强采纳,获得10
44秒前
LJL完成签到 ,获得积分10
48秒前
yong完成签到 ,获得积分10
58秒前
1分钟前
852应助赫贞采纳,获得10
1分钟前
1分钟前
MRu发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147