Assessing the Alignment of Large Language Models With Human Values for Mental Health Integration: Cross-Sectional Study Using Schwartz’s Theory of Basic Values

心理学 价值(数学) 社会心理学 人口 心理健康 人口学 精神科 社会学 统计 数学
作者
Dorit Hadar-Shoval,Kfir Asraf,Yonathan Mizrachi,Yuval Haber,Zohar Elyoseph
出处
期刊:JMIR mental health [JMIR Publications Inc.]
卷期号:11: e55988-e55988 被引量:4
标识
DOI:10.2196/55988
摘要

Background Large language models (LLMs) hold potential for mental health applications. However, their opaque alignment processes may embed biases that shape problematic perspectives. Evaluating the values embedded within LLMs that guide their decision-making have ethical importance. Schwartz’s theory of basic values (STBV) provides a framework for quantifying cultural value orientations and has shown utility for examining values in mental health contexts, including cultural, diagnostic, and therapist-client dynamics. Objective This study aimed to (1) evaluate whether the STBV can measure value-like constructs within leading LLMs and (2) determine whether LLMs exhibit distinct value-like patterns from humans and each other. Methods In total, 4 LLMs (Bard, Claude 2, Generative Pretrained Transformer [GPT]-3.5, GPT-4) were anthropomorphized and instructed to complete the Portrait Values Questionnaire—Revised (PVQ-RR) to assess value-like constructs. Their responses over 10 trials were analyzed for reliability and validity. To benchmark the LLMs’ value profiles, their results were compared to published data from a diverse sample of 53,472 individuals across 49 nations who had completed the PVQ-RR. This allowed us to assess whether the LLMs diverged from established human value patterns across cultural groups. Value profiles were also compared between models via statistical tests. Results The PVQ-RR showed good reliability and validity for quantifying value-like infrastructure within the LLMs. However, substantial divergence emerged between the LLMs’ value profiles and population data. The models lacked consensus and exhibited distinct motivational biases, reflecting opaque alignment processes. For example, all models prioritized universalism and self-direction, while de-emphasizing achievement, power, and security relative to humans. Successful discriminant analysis differentiated the 4 LLMs’ distinct value profiles. Further examination found the biased value profiles strongly predicted the LLMs’ responses when presented with mental health dilemmas requiring choosing between opposing values. This provided further validation for the models embedding distinct motivational value-like constructs that shape their decision-making. Conclusions This study leveraged the STBV to map the motivational value-like infrastructure underpinning leading LLMs. Although the study demonstrated the STBV can effectively characterize value-like infrastructure within LLMs, substantial divergence from human values raises ethical concerns about aligning these models with mental health applications. The biases toward certain cultural value sets pose risks if integrated without proper safeguards. For example, prioritizing universalism could promote unconditional acceptance even when clinically unwise. Furthermore, the differences between the LLMs underscore the need to standardize alignment processes to capture true cultural diversity. Thus, any responsible integration of LLMs into mental health care must account for their embedded biases and motivation mismatches to ensure equitable delivery across diverse populations. Achieving this will require transparency and refinement of alignment techniques to instill comprehensive human values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cocobear完成签到 ,获得积分10
1秒前
Lucas应助Xide采纳,获得30
1秒前
1秒前
李佳楠完成签到,获得积分20
1秒前
ggp完成签到,获得积分0
1秒前
自行车v完成签到,获得积分10
1秒前
1秒前
hhhh完成签到 ,获得积分10
2秒前
早川木槿完成签到,获得积分10
2秒前
Kauio完成签到,获得积分10
3秒前
aaabbb发布了新的文献求助10
3秒前
研友_VZG7GZ应助Daisy采纳,获得10
3秒前
缥缈书本完成签到 ,获得积分10
3秒前
obto完成签到,获得积分20
3秒前
campus完成签到,获得积分10
3秒前
LT完成签到,获得积分10
4秒前
JamesPei应助粱乘风采纳,获得10
4秒前
夏竟添完成签到,获得积分10
4秒前
AA18236931952发布了新的文献求助10
4秒前
murmur完成签到,获得积分10
4秒前
李佳楠发布了新的文献求助10
4秒前
小包完成签到,获得积分10
5秒前
5秒前
哇哇哇完成签到 ,获得积分10
5秒前
寒冷茈完成签到,获得积分20
5秒前
WW完成签到,获得积分10
6秒前
满锅发布了新的文献求助10
6秒前
6秒前
阳阳语晗完成签到,获得积分10
6秒前
留胡子的书白完成签到,获得积分10
6秒前
6秒前
LX发布了新的文献求助10
7秒前
7秒前
8秒前
junyang完成签到,获得积分10
8秒前
tian发布了新的文献求助10
8秒前
Lily完成签到,获得积分10
8秒前
LHS应助熊风采纳,获得10
9秒前
for_abSCI完成签到,获得积分0
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005