已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing the Alignment of Large Language Models With Human Values for Mental Health Integration: Cross-Sectional Study Using Schwartz’s Theory of Basic Values

心理学 价值(数学) 社会心理学 人口 心理健康 人口学 精神科 社会学 统计 数学
作者
Dorit Hadar-Shoval,Kfir Asraf,Yonathan Mizrachi,Yuval Haber,Zohar Elyoseph
出处
期刊:JMIR mental health [JMIR Publications Inc.]
卷期号:11: e55988-e55988 被引量:4
标识
DOI:10.2196/55988
摘要

Background Large language models (LLMs) hold potential for mental health applications. However, their opaque alignment processes may embed biases that shape problematic perspectives. Evaluating the values embedded within LLMs that guide their decision-making have ethical importance. Schwartz’s theory of basic values (STBV) provides a framework for quantifying cultural value orientations and has shown utility for examining values in mental health contexts, including cultural, diagnostic, and therapist-client dynamics. Objective This study aimed to (1) evaluate whether the STBV can measure value-like constructs within leading LLMs and (2) determine whether LLMs exhibit distinct value-like patterns from humans and each other. Methods In total, 4 LLMs (Bard, Claude 2, Generative Pretrained Transformer [GPT]-3.5, GPT-4) were anthropomorphized and instructed to complete the Portrait Values Questionnaire—Revised (PVQ-RR) to assess value-like constructs. Their responses over 10 trials were analyzed for reliability and validity. To benchmark the LLMs’ value profiles, their results were compared to published data from a diverse sample of 53,472 individuals across 49 nations who had completed the PVQ-RR. This allowed us to assess whether the LLMs diverged from established human value patterns across cultural groups. Value profiles were also compared between models via statistical tests. Results The PVQ-RR showed good reliability and validity for quantifying value-like infrastructure within the LLMs. However, substantial divergence emerged between the LLMs’ value profiles and population data. The models lacked consensus and exhibited distinct motivational biases, reflecting opaque alignment processes. For example, all models prioritized universalism and self-direction, while de-emphasizing achievement, power, and security relative to humans. Successful discriminant analysis differentiated the 4 LLMs’ distinct value profiles. Further examination found the biased value profiles strongly predicted the LLMs’ responses when presented with mental health dilemmas requiring choosing between opposing values. This provided further validation for the models embedding distinct motivational value-like constructs that shape their decision-making. Conclusions This study leveraged the STBV to map the motivational value-like infrastructure underpinning leading LLMs. Although the study demonstrated the STBV can effectively characterize value-like infrastructure within LLMs, substantial divergence from human values raises ethical concerns about aligning these models with mental health applications. The biases toward certain cultural value sets pose risks if integrated without proper safeguards. For example, prioritizing universalism could promote unconditional acceptance even when clinically unwise. Furthermore, the differences between the LLMs underscore the need to standardize alignment processes to capture true cultural diversity. Thus, any responsible integration of LLMs into mental health care must account for their embedded biases and motivation mismatches to ensure equitable delivery across diverse populations. Achieving this will require transparency and refinement of alignment techniques to instill comprehensive human values.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助小桃耶采纳,获得10
1秒前
向日葵味武士完成签到 ,获得积分10
3秒前
时间尘埃发布了新的文献求助10
4秒前
魔幻的映波完成签到 ,获得积分10
5秒前
5秒前
阿坤完成签到,获得积分10
5秒前
7秒前
严伟完成签到 ,获得积分10
10秒前
四月发布了新的文献求助10
10秒前
11秒前
11秒前
12秒前
13秒前
13秒前
13秒前
13秒前
15秒前
小冉发布了新的文献求助10
16秒前
晨曦呢发布了新的文献求助10
17秒前
小艺发布了新的文献求助10
17秒前
junsizzz发布了新的文献求助10
18秒前
22秒前
勤奋的猫咪完成签到 ,获得积分10
25秒前
26秒前
junsizzz完成签到,获得积分10
27秒前
nininini发布了新的文献求助10
28秒前
dynamy1224完成签到,获得积分10
31秒前
32秒前
鱼羊明完成签到 ,获得积分10
32秒前
球球的铲屎官完成签到,获得积分10
32秒前
星辰大海应助小艺采纳,获得10
33秒前
34秒前
35秒前
豆腐宣誓发布了新的文献求助10
35秒前
35秒前
38秒前
39秒前
科研通AI6应助sally采纳,获得10
40秒前
Adon发布了新的文献求助10
40秒前
41秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443502
求助须知:如何正确求助?哪些是违规求助? 4553396
关于积分的说明 14241800
捐赠科研通 4475069
什么是DOI,文献DOI怎么找? 2452248
邀请新用户注册赠送积分活动 1443172
关于科研通互助平台的介绍 1418794