亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SugarcaneGAN: A novel dataset generating approach for sugarcane leaf diseases based on lightweight hybrid CNN-Transformer network

变压器 计算机科学 人工智能 工程类 模式识别(心理学) 电气工程 电压
作者
Xuechen Li,Xiuhua Li,Muqing Zhang,Qinghan Dong,Guiying Zhang,Zeping Wang,Peng Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108762-108762 被引量:10
标识
DOI:10.1016/j.compag.2024.108762
摘要

Generative Adversarial Networks (GAN) were applied to provide methodological support for efficient sample expansion of crop disease features. Accurate extraction of leaf foreground scenes is crucial for generating high-quality disease features. However, the reported GAN models, such as LeafGAN and STA-GAN, mainly use Grad-CAM to achieve leaf segmentation, which is only suitable for circular-like leaves under simple backgrounds, and perform unsatisfactory for striped sugarcane leaves under complex backgrounds. To address these problems, we have established a novel data augmentation model SugarcaneGAN with a proposed lightweight U-RSwinT as its leaf extraction module and generator. The proposed U-RSwinT combines the advantages of CNN and Swin Transformer. Two datasets of real sugarcane diseased leaves and healthy leaves were collected and several corresponding GAN-generated disease datasets were generated to train classification models in the downstream task. Experimental results show that U-RSwinT outperforms other modules, such as DeepLabV3, Swin-unet, etc., in leaf extraction accuracy as well as in lesion generation quality under various conditions. The mean FID score of the data generated by SugarcaneGAN was 24% and 34% lower than that of LeafGAN and CycleGAN, respectively, indicating much higher quality of the generated data of SugarcaneGAN. Moreover, SugarcaneGAN only required 51.1% of the training time of LeafGAN. Three classification models (ResNet50, SLViT, and ViT/B16) training from different GAN-generated datasets were further tested in the real sugarcane disease dataset, SugarcaneGAN brings significantly higher test accuracies for all three classification models. The ResNet50 model trained by the SugarcaneGAN-generated dataset has its test accuracy, precision, recall, specificity, and F1 score improved by 12.8%, 0.49%, 26.26%, 2.99%, and 0.1554, respectively, compared to that based on the second best LeafGAN-generated dataset. All the results show that SugarcaneGAN brings great improvement in the upstream task of data generation as well as in the downstream task of disease classification compared to the state-of-art GAN models, indicating great potential for leaf-diseased leaf image augmentation and in-situ leaf disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JrPaleo101发布了新的文献求助50
5秒前
10秒前
13秒前
小梦发布了新的文献求助10
17秒前
26秒前
ccyy完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
42秒前
1分钟前
1分钟前
醉熏的飞薇完成签到,获得积分10
1分钟前
1分钟前
Rabbit发布了新的文献求助10
1分钟前
Perry发布了新的文献求助10
1分钟前
1分钟前
Perry完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
JrPaleo101完成签到,获得积分10
2分钟前
遇上就这样吧应助liudy采纳,获得50
2分钟前
2分钟前
Chocolat_Chaud完成签到,获得积分10
2分钟前
舒适踏歌完成签到,获得积分10
2分钟前
3分钟前
Esperanza完成签到,获得积分10
3分钟前
完美的海发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
完美的海完成签到,获得积分10
4分钟前
wisdom发布了新的文献求助10
4分钟前
水牛完成签到,获得积分20
4分钟前
4分钟前
HL完成签到,获得积分10
4分钟前
4分钟前
flyingpig应助wisdom采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
Sid完成签到,获得积分0
6分钟前
李li完成签到,获得积分20
6分钟前
论高等数学的无用性完成签到 ,获得积分10
6分钟前
搜集达人应助小梦采纳,获得10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264