亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SugarcaneGAN: A novel dataset generating approach for sugarcane leaf diseases based on lightweight hybrid CNN-Transformer network

变压器 计算机科学 人工智能 工程类 模式识别(心理学) 电气工程 电压
作者
Xuechen Li,Xiuhua Li,Muqing Zhang,Qinghan Dong,Guiying Zhang,Zeping Wang,Peng Wei
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108762-108762 被引量:3
标识
DOI:10.1016/j.compag.2024.108762
摘要

Generative Adversarial Networks (GAN) were applied to provide methodological support for efficient sample expansion of crop disease features. Accurate extraction of leaf foreground scenes is crucial for generating high-quality disease features. However, the reported GAN models, such as LeafGAN and STA-GAN, mainly use Grad-CAM to achieve leaf segmentation, which is only suitable for circular-like leaves under simple backgrounds, and perform unsatisfactory for striped sugarcane leaves under complex backgrounds. To address these problems, we have established a novel data augmentation model SugarcaneGAN with a proposed lightweight U-RSwinT as its leaf extraction module and generator. The proposed U-RSwinT combines the advantages of CNN and Swin Transformer. Two datasets of real sugarcane diseased leaves and healthy leaves were collected and several corresponding GAN-generated disease datasets were generated to train classification models in the downstream task. Experimental results show that U-RSwinT outperforms other modules, such as DeepLabV3, Swin-unet, etc., in leaf extraction accuracy as well as in lesion generation quality under various conditions. The mean FID score of the data generated by SugarcaneGAN was 24% and 34% lower than that of LeafGAN and CycleGAN, respectively, indicating much higher quality of the generated data of SugarcaneGAN. Moreover, SugarcaneGAN only required 51.1% of the training time of LeafGAN. Three classification models (ResNet50, SLViT, and ViT/B16) training from different GAN-generated datasets were further tested in the real sugarcane disease dataset, SugarcaneGAN brings significantly higher test accuracies for all three classification models. The ResNet50 model trained by the SugarcaneGAN-generated dataset has its test accuracy, precision, recall, specificity, and F1 score improved by 12.8%, 0.49%, 26.26%, 2.99%, and 0.1554, respectively, compared to that based on the second best LeafGAN-generated dataset. All the results show that SugarcaneGAN brings great improvement in the upstream task of data generation as well as in the downstream task of disease classification compared to the state-of-art GAN models, indicating great potential for leaf-diseased leaf image augmentation and in-situ leaf disease diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sooinlee完成签到,获得积分20
9秒前
13秒前
万能图书馆应助haha采纳,获得10
13秒前
22秒前
李李发布了新的文献求助10
29秒前
51秒前
fendy应助科研通管家采纳,获得50
1分钟前
悦耳的绮山完成签到,获得积分10
1分钟前
溯风完成签到 ,获得积分10
1分钟前
李李完成签到,获得积分10
1分钟前
1分钟前
fuiee发布了新的文献求助10
1分钟前
heavennew完成签到,获得积分10
1分钟前
天天快乐应助heavennew采纳,获得10
1分钟前
潇潇完成签到 ,获得积分10
2分钟前
2分钟前
深情安青应助顺利山柏采纳,获得10
2分钟前
莫即完成签到 ,获得积分10
2分钟前
鹏虫虫发布了新的文献求助10
2分钟前
2分钟前
3分钟前
heavennew发布了新的文献求助10
3分钟前
3分钟前
3分钟前
揍鱼完成签到 ,获得积分10
3分钟前
DddZS完成签到 ,获得积分10
3分钟前
zhuzhuzhu完成签到,获得积分10
3分钟前
cqcc完成签到 ,获得积分10
4分钟前
hhf完成签到,获得积分10
4分钟前
zhuzhuzhu发布了新的文献求助10
4分钟前
4分钟前
4分钟前
wenwen发布了新的文献求助10
4分钟前
英姑应助Rabbithouse采纳,获得10
4分钟前
希望天下0贩的0应助狗蛋采纳,获得10
5分钟前
不去明知山完成签到 ,获得积分10
5分钟前
S_ki关注了科研通微信公众号
5分钟前
5分钟前
狗蛋发布了新的文献求助10
5分钟前
S_ki发布了新的文献求助10
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801948
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748