Precision in wheat flour classification: Harnessing the power of deep learning and two-dimensional correlation spectrum (2DCOS)

相关性 深度学习 人工智能 模式识别(心理学) 光谱密度 计算机科学 数学 统计 几何学
作者
Tianrui Zhang,Yifan Wang,Jiansong Sun,Jing Liang,Bin Wang,Xiaoxuan Xu,Jing Xu,Lei Liu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:314: 124112-124112
标识
DOI:10.1016/j.saa.2024.124112
摘要

Wheat flour is a ubiquitous food ingredient, yet discerning its various types can prove challenging. A practical approach for identifying wheat flour types involves analyzing one-dimensional near-infrared spectroscopy (NIRS) data. This paper introduces an innovative method for wheat flour recognition, combining deep learning (DL) with Two-dimensional correlation spectrum (2DCOS). In this investigation, 316 samples from four distinct types of wheat flour were collected using a near-infrared (NIR) spectrometer, and the raw spectra of each sample underwent preprocessing employing diverse methods. The discrete generalized 2DCOS algorithm was applied to generate 3792 2DCOS images from the preprocessed spectral data. We trained a deep learning model tailored for flour 2DCOS images – EfficientNet. Ultimately, this DL model achieved 100% accuracy in identifying wheat flour within the test set. The findings demonstrate the viability of directly transforming spectra into two-dimensional images for species recognition using 2DCOS and DL. Compared to the traditional stoichiometric method Partial Least Squares Discriminant Analysis (PLS_DA), machine learning methods Support Vector Machines (SVM) and K-Nearest Neighbors (KNN), and deep learning methods one-dimensional convolutional neural network (1DCNN) and residual neural network (ResNet), the model proposed in this paper is better suited for wheat flour identification, boasting the highest accuracy. This study offers a fresh perspective on wheat flour type identification and successfully integrates the latest advancements in deep learning with 2DCOS for spectral type identification. Furthermore, this approach can be extended to the spectral identification of other products, presenting a novel avenue for future research in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
龙之介完成签到,获得积分10
刚刚
shinyar完成签到 ,获得积分10
1秒前
pylchm完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
JF完成签到,获得积分10
3秒前
WY完成签到,获得积分10
4秒前
wintel完成签到,获得积分10
4秒前
4秒前
冷静的傲松完成签到,获得积分10
4秒前
那些年发布了新的文献求助10
5秒前
万能图书馆应助稳重幻珊采纳,获得10
5秒前
5秒前
Mushroom007发布了新的文献求助10
6秒前
6秒前
superLmy完成签到 ,获得积分10
7秒前
Fly完成签到,获得积分10
8秒前
eboy发布了新的文献求助10
8秒前
wang应助直率翠绿采纳,获得10
9秒前
Beautieat1发布了新的文献求助30
9秒前
英勇明雪完成签到,获得积分10
10秒前
wubobo完成签到,获得积分10
10秒前
洋子发布了新的文献求助20
10秒前
碧蓝可乐完成签到,获得积分10
11秒前
华仔应助那些年采纳,获得10
11秒前
11秒前
我是中国人完成签到,获得积分10
12秒前
12秒前
whiteside完成签到,获得积分10
12秒前
12秒前
妩媚的初晴完成签到,获得积分10
12秒前
12秒前
田様应助天冷了采纳,获得10
13秒前
14秒前
怡然慕青关注了科研通微信公众号
14秒前
14秒前
lize5493发布了新的文献求助10
14秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441016
求助须知:如何正确求助?哪些是违规求助? 3037387
关于积分的说明 8968794
捐赠科研通 2725927
什么是DOI,文献DOI怎么找? 1495136
科研通“疑难数据库(出版商)”最低求助积分说明 691137
邀请新用户注册赠送积分活动 687879