Dysfunction of CCT3-associated network signals for the critical state during progression of hepatocellular carcinoma

肝细胞癌 转录组 生物标志物 预警系统 肿瘤进展 医学 癌症研究 肿瘤科 计算生物学 内科学 基因 生物 基因表达 计算机科学 癌症 遗传学 电信
作者
Jianwei Wang,Xiaowen Guan,Ning Shang,Di Wu,Zihan Liu,Zhenzhen Guan,Zhizi Zhang,Zhongzhen Jin,Xiaoyi Wei,Xiaoran Liu,Mingzhu Song,Zhu Weijun,Gui‐Fu Dai
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier]
卷期号:1870 (4): 167054-167054
标识
DOI:10.1016/j.bbadis.2024.167054
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美平凡发布了新的文献求助150
1秒前
彭于晏应助gkq采纳,获得10
2秒前
112233发布了新的文献求助10
2秒前
八十八夜的茶摘完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
李爱国应助Nov采纳,获得10
9秒前
9秒前
丁丁发布了新的文献求助10
10秒前
10秒前
11秒前
Liu完成签到,获得积分10
11秒前
12秒前
gkq发布了新的文献求助10
14秒前
风清扬发布了新的文献求助10
15秒前
17秒前
华仔应助袁向薇采纳,获得10
17秒前
北北完成签到,获得积分10
18秒前
18秒前
酷波er应助实现一个梦想采纳,获得30
19秒前
19秒前
19秒前
123完成签到,获得积分10
19秒前
20秒前
阳阳发布了新的文献求助10
20秒前
Tourist应助djbj2022采纳,获得10
20秒前
健壮易巧完成签到,获得积分10
20秒前
123发布了新的文献求助10
21秒前
善学以致用应助Rian采纳,获得10
22秒前
22秒前
22秒前
TEMPO发布了新的文献求助10
22秒前
24秒前
25秒前
Nov发布了新的文献求助10
25秒前
秘书发布了新的文献求助10
25秒前
25秒前
冷傲向雪完成签到,获得积分20
26秒前
今后应助Tigher采纳,获得30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741