Dysfunction of CCT3-associated network signals for the critical state during progression of hepatocellular carcinoma

肝细胞癌 转录组 生物标志物 预警系统 肿瘤进展 医学 癌症研究 肿瘤科 计算生物学 内科学 基因 生物 基因表达 计算机科学 癌症 遗传学 电信
作者
Jianwei Wang,Xiaowen Guan,Ning Shang,Di Wu,Zihan Liu,Zhenzhen Guan,Zhizi Zhang,Zhongzhen Jin,Xiaoyi Wei,Xiaoran Liu,Mingzhu Song,Zhu Weijun,Gui‐Fu Dai
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier]
卷期号:1870 (4): 167054-167054
标识
DOI:10.1016/j.bbadis.2024.167054
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jklwss完成签到,获得积分10
1秒前
今后应助LLL采纳,获得10
2秒前
希望天下0贩的0应助源缘采纳,获得10
2秒前
跑快点发布了新的文献求助10
2秒前
wenchong发布了新的文献求助10
2秒前
大梦想家完成签到,获得积分10
3秒前
3秒前
3秒前
haha完成签到,获得积分10
3秒前
许译匀完成签到,获得积分10
4秒前
FashionBoy应助阿肖呀采纳,获得10
5秒前
道心发布了新的文献求助10
6秒前
万松辉发布了新的文献求助10
6秒前
周雪完成签到 ,获得积分10
7秒前
小云杉发布了新的文献求助10
7秒前
8秒前
卫凡霜发布了新的文献求助10
8秒前
许译匀发布了新的文献求助10
9秒前
123给123的求助进行了留言
9秒前
张张发布了新的文献求助10
9秒前
CodeCraft应助xue采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
神勇乐曲完成签到,获得积分10
10秒前
Mry发布了新的文献求助10
10秒前
南浔完成签到,获得积分10
11秒前
11秒前
啥都懂发布了新的文献求助10
12秒前
13秒前
pazhao发布了新的文献求助10
15秒前
大模型应助许译匀采纳,获得10
15秒前
Akim应助覃攀攀采纳,获得10
15秒前
多年以后完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
17秒前
18秒前
情怀应助tql9211采纳,获得10
19秒前
Zooey旎旎完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605