Dysfunction of CCT3-associated network signals for the critical state during progression of hepatocellular carcinoma

肝细胞癌 转录组 生物标志物 预警系统 肿瘤进展 医学 癌症研究 肿瘤科 计算生物学 内科学 基因 生物 基因表达 计算机科学 癌症 遗传学 电信
作者
Jianwei Wang,Xiaowen Guan,Ning Shang,Di Wu,Zihan Liu,Zhenzhen Guan,Zhizi Zhang,Zhongzhen Jin,Xiaoyi Wei,Xiaoran Liu,Mingzhu Song,Zhu Weijun,Gui‐Fu Dai
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier]
卷期号:1870 (4): 167054-167054
标识
DOI:10.1016/j.bbadis.2024.167054
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hx完成签到 ,获得积分10
1秒前
1秒前
单薄靖儿完成签到,获得积分10
2秒前
2秒前
2秒前
曦忘发布了新的文献求助10
3秒前
3秒前
3秒前
852应助壮观夜南采纳,获得10
3秒前
SciGPT应助研友_85YNe8采纳,获得10
4秒前
1111完成签到 ,获得积分10
4秒前
Melody发布了新的文献求助10
4秒前
内向阑悦发布了新的文献求助30
5秒前
mary发布了新的文献求助10
5秒前
脑洞疼应助邵垒采纳,获得10
6秒前
7秒前
Owen应助闪闪的大炮采纳,获得10
7秒前
执着书南发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
fangyuan应助辣椒不辣采纳,获得10
10秒前
游戏人间发布了新的文献求助20
10秒前
10秒前
TT发布了新的文献求助10
10秒前
坦率抽屉完成签到 ,获得积分10
11秒前
mingshiren完成签到,获得积分20
11秒前
henry完成签到,获得积分10
11秒前
13秒前
整齐夏旋完成签到,获得积分10
13秒前
艾米修兔完成签到,获得积分10
14秒前
科研通AI6应助小狗日记ddd采纳,获得10
14秒前
14秒前
悠悠发布了新的文献求助10
14秒前
15秒前
asdl完成签到,获得积分10
16秒前
ayitime发布了新的文献求助30
16秒前
17秒前
17秒前
Yearnryong完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680471
求助须知:如何正确求助?哪些是违规求助? 4999474
关于积分的说明 15173146
捐赠科研通 4840392
什么是DOI,文献DOI怎么找? 2594044
邀请新用户注册赠送积分活动 1547083
关于科研通互助平台的介绍 1505062