Dysfunction of CCT3-associated network signals for the critical state during progression of hepatocellular carcinoma

肝细胞癌 转录组 生物标志物 预警系统 肿瘤进展 医学 癌症研究 肿瘤科 计算生物学 内科学 基因 生物 基因表达 计算机科学 癌症 遗传学 电信
作者
Jianwei Wang,Xiaowen Guan,Ning Shang,Di Wu,Zihan Liu,Zhenzhen Guan,Zhizi Zhang,Zhongzhen Jin,Xiaoyi Wei,Xiaoran Liu,Mingzhu Song,Zhu Weijun,Gui‐Fu Dai
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier]
卷期号:1870 (4): 167054-167054
标识
DOI:10.1016/j.bbadis.2024.167054
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自然的茉莉完成签到,获得积分10
1秒前
刘璟高完成签到,获得积分10
1秒前
weddcf发布了新的文献求助10
1秒前
1秒前
赘婿应助WESTBROOK采纳,获得10
2秒前
852应助kouke80采纳,获得10
3秒前
酷波er应助药神L采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
jiahongcao发布了新的文献求助10
4秒前
danielsong发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
自由的微风完成签到,获得积分10
5秒前
当里个当完成签到,获得积分10
5秒前
锁指导完成签到,获得积分10
6秒前
刻苦牛马完成签到 ,获得积分10
8秒前
时尚的初柔完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
独孤九原发布了新的文献求助10
10秒前
wanci应助拾起采纳,获得10
11秒前
万能图书馆应助weddcf采纳,获得10
11秒前
vec完成签到,获得积分10
12秒前
u9227完成签到 ,获得积分10
12秒前
12秒前
乐乐应助wushangyu采纳,获得10
13秒前
科研通AI6应助Xiang采纳,获得10
13秒前
小狒狒发布了新的文献求助10
13秒前
paradise发布了新的文献求助10
14秒前
华仔应助triwinster采纳,获得10
14秒前
李桂芳完成签到,获得积分10
15秒前
郭德纲完成签到,获得积分10
15秒前
tiomooo完成签到,获得积分10
15秒前
可爱的函函应助danielsong采纳,获得10
15秒前
orixero应助药神L采纳,获得10
15秒前
16秒前
LL完成签到,获得积分10
16秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580919
求助须知:如何正确求助?哪些是违规求助? 4665646
关于积分的说明 14757173
捐赠科研通 4607288
什么是DOI,文献DOI怎么找? 2528195
邀请新用户注册赠送积分活动 1497468
关于科研通互助平台的介绍 1466442