Dysfunction of CCT3-associated network signals for the critical state during progression of hepatocellular carcinoma

肝细胞癌 转录组 生物标志物 预警系统 肿瘤进展 医学 癌症研究 肿瘤科 计算生物学 内科学 基因 生物 基因表达 计算机科学 癌症 遗传学 电信
作者
Jianwei Wang,Xiaowen Guan,Ning Shang,Di Wu,Zihan Liu,Zhenzhen Guan,Zhizi Zhang,Zhongzhen Jin,Xiaoyi Wei,Xiaoran Liu,Mingzhu Song,Zhu Weijun,Gui‐Fu Dai
出处
期刊:Biochimica Et Biophysica Acta: Molecular Basis Of Disease [Elsevier BV]
卷期号:1870 (4): 167054-167054
标识
DOI:10.1016/j.bbadis.2024.167054
摘要

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
1秒前
Suagy应助syt128采纳,获得10
2秒前
2秒前
仲夏发布了新的文献求助10
2秒前
lizzyming发布了新的文献求助10
3秒前
3秒前
lihuanmoon完成签到,获得积分10
3秒前
李xue发布了新的文献求助10
4秒前
风中淇完成签到,获得积分10
4秒前
joe应助大胆的锅包肉采纳,获得10
4秒前
科研通AI5应助研友_nvG5bZ采纳,获得10
4秒前
4秒前
5秒前
科研通AI5应助77采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助20
6秒前
6秒前
六六大顺完成签到,获得积分10
7秒前
华仔应助123采纳,获得10
7秒前
8秒前
幸运海星完成签到,获得积分10
8秒前
既晓发布了新的文献求助10
8秒前
维维逗奶发布了新的文献求助10
8秒前
8秒前
9秒前
宁柠咛发布了新的文献求助10
10秒前
小梨完成签到,获得积分10
10秒前
852应助花开富贵采纳,获得10
10秒前
咖啡不加糖完成签到,获得积分10
10秒前
饼饼发布了新的文献求助10
11秒前
无聊的爆米花完成签到,获得积分10
11秒前
fg2477完成签到,获得积分10
11秒前
承允发布了新的文献求助10
12秒前
幽默的幻珊完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602889
求助须知:如何正确求助?哪些是违规求助? 4011856
关于积分的说明 12420674
捐赠科研通 3692191
什么是DOI,文献DOI怎么找? 2035504
邀请新用户注册赠送积分活动 1068692
科研通“疑难数据库(出版商)”最低求助积分说明 953208