Self-training approach to improve the predictability of data-driven rainfall-runoff model in hydrological data-sparse regions

水流 计算机科学 可预测性 地表径流 人工智能 机器学习 流域 统计 数学 地图学 地理 生态学 生物
作者
Sung-Hyun Yoon,Kuk‐Hyun Ahn
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:632: 130862-130862 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.130862
摘要

Numerous data-driven models have been introduced to establish reliable predictions in the rainfall-runoff relationship. The majority of these models are trained using a supervised learning approach, with paired observed (i.e., labeled) samples of climate and streamflow data. However, in practice, the availability of such paired observations is often constrained due to sparse data from streamflow gauges worldwide, which typically covers only a few years/regions. This limited number of paired samples can significantly impede the learning ability of the data-driven model. To fill this gap, we present self-training, a semi-supervised learning approach that imputes the pseudo streamflows for unpaired (i.e., unlabeled) samples to increase the amount of available paired samples. To elaborate, we adopt teacher-student framework. The teacher model is first trained on (limited number of) paired samples and then works as a generator of pseudo streamflow for unpaired samples. The student model is trained on both paired and pseudo streamflow-endowed samples. Notably, our framework introduces an annealing-able loss function for training the student model, designed to compensate for the uncertainty in pseudo streamflow. To validate the effectiveness of the proposed framework, we conducted an extensive set of experiments encompassing diverse spatial and temporal controlled settings, all of which utilized the LSTM network. The experiments are based on basins from the freely available CAMELS dataset. Results indicate that the proposed framework of self-training show significantly enhanced performance compared to the baseline models built in fully-supervised manners with sparse paired observations. Results also show that the framework can serve as a viable alternative to the previously developed fully supervised approaches. Lastly, we address potential avenues for enhancing the model and provide an outline of our future research plans in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
专注的谷蓝完成签到,获得积分10
1秒前
深呼吸发布了新的文献求助10
1秒前
shanlu完成签到,获得积分10
1秒前
Orange应助繁星与北斗采纳,获得10
2秒前
2秒前
黄耀完成签到,获得积分10
2秒前
2秒前
abc1122完成签到,获得积分10
3秒前
wyh发布了新的文献求助10
3秒前
劣根完成签到,获得积分10
3秒前
何相逢完成签到,获得积分0
3秒前
LEE123完成签到,获得积分10
3秒前
感性的剑愁完成签到,获得积分10
4秒前
凉凉应助dtcao采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
卡卡西发布了新的文献求助10
4秒前
4秒前
长风与海浪完成签到 ,获得积分10
5秒前
MAOJCFK发布了新的文献求助10
6秒前
6秒前
faiting完成签到,获得积分10
6秒前
勤奋的天亦完成签到,获得积分10
6秒前
kiyo_v完成签到,获得积分10
6秒前
邓代容发布了新的文献求助10
7秒前
无私的芹应助yuelsy0117采纳,获得10
7秒前
ZHYChen完成签到,获得积分10
7秒前
huk发布了新的文献求助10
7秒前
ZJJ静完成签到,获得积分10
8秒前
董竹君完成签到,获得积分10
8秒前
俭朴的天曼完成签到,获得积分10
8秒前
Lucas应助顺心的翠丝采纳,获得10
9秒前
李田田完成签到,获得积分20
9秒前
9秒前
义气乐儿发布了新的文献求助10
9秒前
宅心仁厚完成签到 ,获得积分10
10秒前
10秒前
骑猪看日落完成签到,获得积分10
10秒前
冥冥之极为昭昭完成签到,获得积分10
10秒前
繁荣的又夏完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027