已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Self-training approach to improve the predictability of data-driven rainfall-runoff model in hydrological data-sparse regions

水流 计算机科学 可预测性 地表径流 人工智能 机器学习 流域 统计 数学 地图学 地理 生态学 生物
作者
Sung-Hyun Yoon,Kuk‐Hyun Ahn
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130862-130862 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.130862
摘要

Numerous data-driven models have been introduced to establish reliable predictions in the rainfall-runoff relationship. The majority of these models are trained using a supervised learning approach, with paired observed (i.e., labeled) samples of climate and streamflow data. However, in practice, the availability of such paired observations is often constrained due to sparse data from streamflow gauges worldwide, which typically covers only a few years/regions. This limited number of paired samples can significantly impede the learning ability of the data-driven model. To fill this gap, we present self-training, a semi-supervised learning approach that imputes the pseudo streamflows for unpaired (i.e., unlabeled) samples to increase the amount of available paired samples. To elaborate, we adopt teacher-student framework. The teacher model is first trained on (limited number of) paired samples and then works as a generator of pseudo streamflow for unpaired samples. The student model is trained on both paired and pseudo streamflow-endowed samples. Notably, our framework introduces an annealing-able loss function for training the student model, designed to compensate for the uncertainty in pseudo streamflow. To validate the effectiveness of the proposed framework, we conducted an extensive set of experiments encompassing diverse spatial and temporal controlled settings, all of which utilized the LSTM network. The experiments are based on basins from the freely available CAMELS dataset. Results indicate that the proposed framework of self-training show significantly enhanced performance compared to the baseline models built in fully-supervised manners with sparse paired observations. Results also show that the framework can serve as a viable alternative to the previously developed fully supervised approaches. Lastly, we address potential avenues for enhancing the model and provide an outline of our future research plans in this domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanzhang完成签到 ,获得积分10
刚刚
渟柠完成签到,获得积分20
1秒前
4秒前
6秒前
8R60d8应助蓝颜采纳,获得10
9秒前
vicky完成签到 ,获得积分10
10秒前
lixiaolu完成签到 ,获得积分10
11秒前
12秒前
jingutaimi完成签到,获得积分10
13秒前
djbj2022发布了新的文献求助10
14秒前
16秒前
zzk完成签到,获得积分10
20秒前
zzk发布了新的文献求助10
24秒前
dkw完成签到 ,获得积分10
25秒前
amengptsd完成签到,获得积分10
25秒前
peaches完成签到,获得积分10
26秒前
28秒前
Rainsky完成签到 ,获得积分10
30秒前
zxzhou18发布了新的文献求助10
31秒前
35秒前
39秒前
默默襄完成签到 ,获得积分10
40秒前
41秒前
42秒前
可靠如风发布了新的文献求助10
42秒前
雷晨晨完成签到 ,获得积分10
45秒前
平淡绝悟发布了新的文献求助10
46秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
彭于晏应助科研通管家采纳,获得10
46秒前
50秒前
可靠如风完成签到,获得积分10
51秒前
52秒前
54秒前
ljx完成签到 ,获得积分10
55秒前
小智发布了新的文献求助10
56秒前
57秒前
shui发布了新的文献求助10
57秒前
Cho发布了新的文献求助10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528663
求助须知:如何正确求助?哪些是违规求助? 4618176
关于积分的说明 14562062
捐赠科研通 4556973
什么是DOI,文献DOI怎么找? 2497281
邀请新用户注册赠送积分活动 1477530
关于科研通互助平台的介绍 1448838