Self-training approach to improve the predictability of data-driven rainfall-runoff model in hydrological data-sparse regions

水流 计算机科学 可预测性 地表径流 人工智能 机器学习 流域 统计 数学 地图学 地理 生态学 生物
作者
Sung-Hyun Yoon,Kuk‐Hyun Ahn
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130862-130862 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.130862
摘要

Numerous data-driven models have been introduced to establish reliable predictions in the rainfall-runoff relationship. The majority of these models are trained using a supervised learning approach, with paired observed (i.e., labeled) samples of climate and streamflow data. However, in practice, the availability of such paired observations is often constrained due to sparse data from streamflow gauges worldwide, which typically covers only a few years/regions. This limited number of paired samples can significantly impede the learning ability of the data-driven model. To fill this gap, we present self-training, a semi-supervised learning approach that imputes the pseudo streamflows for unpaired (i.e., unlabeled) samples to increase the amount of available paired samples. To elaborate, we adopt teacher-student framework. The teacher model is first trained on (limited number of) paired samples and then works as a generator of pseudo streamflow for unpaired samples. The student model is trained on both paired and pseudo streamflow-endowed samples. Notably, our framework introduces an annealing-able loss function for training the student model, designed to compensate for the uncertainty in pseudo streamflow. To validate the effectiveness of the proposed framework, we conducted an extensive set of experiments encompassing diverse spatial and temporal controlled settings, all of which utilized the LSTM network. The experiments are based on basins from the freely available CAMELS dataset. Results indicate that the proposed framework of self-training show significantly enhanced performance compared to the baseline models built in fully-supervised manners with sparse paired observations. Results also show that the framework can serve as a viable alternative to the previously developed fully supervised approaches. Lastly, we address potential avenues for enhancing the model and provide an outline of our future research plans in this domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老北京发布了新的文献求助10
1秒前
2秒前
Kiana完成签到,获得积分10
3秒前
HoiChan发布了新的文献求助10
3秒前
欢乐谷完成签到,获得积分10
3秒前
XIAOMEIMA完成签到,获得积分10
4秒前
科目三应助Arlene采纳,获得10
5秒前
乐观宛海完成签到,获得积分10
5秒前
体贴香岚发布了新的文献求助10
5秒前
传奇3应助axiba采纳,获得10
5秒前
6秒前
英姑应助葛稀采纳,获得10
6秒前
XIAOMEIMA发布了新的文献求助100
7秒前
8秒前
子车茗应助TeeteePor采纳,获得10
8秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
知然发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
解语花发布了新的文献求助150
12秒前
健壮易巧完成签到,获得积分10
13秒前
GeoTong发布了新的文献求助10
15秒前
肖浩翔发布了新的文献求助10
15秒前
可靠猎豹完成签到,获得积分10
15秒前
Zbx发布了新的文献求助10
16秒前
Akim应助berg采纳,获得10
16秒前
16秒前
17秒前
科研通AI6应助矮小的笑旋采纳,获得10
19秒前
清爽的含灵完成签到,获得积分10
19秒前
优美橘子发布了新的文献求助10
21秒前
lilili发布了新的文献求助10
22秒前
儒雅的轻舞飘扬完成签到,获得积分10
22秒前
明理绝悟完成签到 ,获得积分10
22秒前
很傻的狗完成签到,获得积分0
23秒前
稳重擎苍完成签到,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497