Self-training approach to improve the predictability of data-driven rainfall-runoff model in hydrological data-sparse regions

水流 计算机科学 可预测性 地表径流 人工智能 机器学习 流域 统计 数学 地图学 地理 生态学 生物
作者
Sung-Hyun Yoon,Kuk‐Hyun Ahn
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130862-130862 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.130862
摘要

Numerous data-driven models have been introduced to establish reliable predictions in the rainfall-runoff relationship. The majority of these models are trained using a supervised learning approach, with paired observed (i.e., labeled) samples of climate and streamflow data. However, in practice, the availability of such paired observations is often constrained due to sparse data from streamflow gauges worldwide, which typically covers only a few years/regions. This limited number of paired samples can significantly impede the learning ability of the data-driven model. To fill this gap, we present self-training, a semi-supervised learning approach that imputes the pseudo streamflows for unpaired (i.e., unlabeled) samples to increase the amount of available paired samples. To elaborate, we adopt teacher-student framework. The teacher model is first trained on (limited number of) paired samples and then works as a generator of pseudo streamflow for unpaired samples. The student model is trained on both paired and pseudo streamflow-endowed samples. Notably, our framework introduces an annealing-able loss function for training the student model, designed to compensate for the uncertainty in pseudo streamflow. To validate the effectiveness of the proposed framework, we conducted an extensive set of experiments encompassing diverse spatial and temporal controlled settings, all of which utilized the LSTM network. The experiments are based on basins from the freely available CAMELS dataset. Results indicate that the proposed framework of self-training show significantly enhanced performance compared to the baseline models built in fully-supervised manners with sparse paired observations. Results also show that the framework can serve as a viable alternative to the previously developed fully supervised approaches. Lastly, we address potential avenues for enhancing the model and provide an outline of our future research plans in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助欣欣采纳,获得10
刚刚
刚刚
3秒前
3秒前
极品小亮发布了新的文献求助10
5秒前
嘤嘤怪完成签到,获得积分10
5秒前
6秒前
985博士发布了新的文献求助20
7秒前
7秒前
冷静的肖恩完成签到 ,获得积分10
7秒前
8秒前
123发布了新的文献求助10
8秒前
肉卷完成签到 ,获得积分10
9秒前
samantha完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
璐璐发布了新的文献求助10
13秒前
李大龙完成签到,获得积分10
13秒前
NINI完成签到 ,获得积分10
14秒前
14秒前
子心完成签到,获得积分10
15秒前
淏瀚发布了新的文献求助10
16秒前
海绵徐发布了新的文献求助10
17秒前
西蓝花发布了新的文献求助10
17秒前
11122333完成签到 ,获得积分10
18秒前
独特的夜阑完成签到 ,获得积分10
18秒前
小新完成签到,获得积分20
18秒前
moshushan520完成签到,获得积分10
18秒前
无花果应助ironsilica采纳,获得10
18秒前
pupu完成签到 ,获得积分20
19秒前
DAN_完成签到,获得积分10
20秒前
985博士完成签到,获得积分20
20秒前
shh完成签到,获得积分10
21秒前
22秒前
1019完成签到,获得积分10
22秒前
领导范儿应助易吴鱼采纳,获得10
22秒前
23秒前
正在发布了新的文献求助20
24秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135145
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775648
捐赠科研通 2441991
什么是DOI,文献DOI怎么找? 1298332
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600845