Self-training approach to improve the predictability of data-driven rainfall-runoff model in hydrological data-sparse regions

水流 计算机科学 可预测性 地表径流 人工智能 机器学习 流域 统计 数学 地图学 地理 生态学 生物
作者
Sung-Hyun Yoon,Kuk‐Hyun Ahn
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:632: 130862-130862 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.130862
摘要

Numerous data-driven models have been introduced to establish reliable predictions in the rainfall-runoff relationship. The majority of these models are trained using a supervised learning approach, with paired observed (i.e., labeled) samples of climate and streamflow data. However, in practice, the availability of such paired observations is often constrained due to sparse data from streamflow gauges worldwide, which typically covers only a few years/regions. This limited number of paired samples can significantly impede the learning ability of the data-driven model. To fill this gap, we present self-training, a semi-supervised learning approach that imputes the pseudo streamflows for unpaired (i.e., unlabeled) samples to increase the amount of available paired samples. To elaborate, we adopt teacher-student framework. The teacher model is first trained on (limited number of) paired samples and then works as a generator of pseudo streamflow for unpaired samples. The student model is trained on both paired and pseudo streamflow-endowed samples. Notably, our framework introduces an annealing-able loss function for training the student model, designed to compensate for the uncertainty in pseudo streamflow. To validate the effectiveness of the proposed framework, we conducted an extensive set of experiments encompassing diverse spatial and temporal controlled settings, all of which utilized the LSTM network. The experiments are based on basins from the freely available CAMELS dataset. Results indicate that the proposed framework of self-training show significantly enhanced performance compared to the baseline models built in fully-supervised manners with sparse paired observations. Results also show that the framework can serve as a viable alternative to the previously developed fully supervised approaches. Lastly, we address potential avenues for enhancing the model and provide an outline of our future research plans in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒景景完成签到,获得积分10
刚刚
1秒前
时钟完成签到,获得积分20
1秒前
TEDDY发布了新的文献求助10
1秒前
heye完成签到,获得积分20
1秒前
鱼鱼鱼完成签到,获得积分10
1秒前
憨憨发布了新的文献求助10
1秒前
Mimi发布了新的文献求助10
1秒前
2秒前
核桃发布了新的文献求助10
2秒前
3秒前
3秒前
饲养员发布了新的文献求助10
3秒前
4秒前
4秒前
水水应助天蓝日月潭采纳,获得20
4秒前
今后应助Wangjj采纳,获得30
4秒前
luo完成签到,获得积分10
5秒前
莫咏怡发布了新的文献求助10
6秒前
乐乐应助Corn_Dog采纳,获得10
6秒前
鱼鱼鱼发布了新的文献求助10
6秒前
隐形曼青应助网上飞采纳,获得10
6秒前
6秒前
科研通AI6应助kjwu采纳,获得10
6秒前
GLZ6984发布了新的文献求助10
7秒前
sda发布了新的文献求助10
8秒前
laryc完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
Ksharp10完成签到,获得积分10
9秒前
大野发布了新的文献求助10
10秒前
10秒前
10秒前
sda完成签到,获得积分10
10秒前
明理如凡完成签到,获得积分10
11秒前
科研通AI6应助Double采纳,获得10
12秒前
pokexuejiao完成签到,获得积分10
12秒前
李雅欣发布了新的文献求助10
12秒前
完美世界应助分隔符采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728