清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Self-training approach to improve the predictability of data-driven rainfall-runoff model in hydrological data-sparse regions

水流 计算机科学 可预测性 地表径流 人工智能 机器学习 流域 统计 数学 地图学 地理 生态学 生物
作者
Sung-Hyun Yoon,Kuk‐Hyun Ahn
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:632: 130862-130862 被引量:1
标识
DOI:10.1016/j.jhydrol.2024.130862
摘要

Numerous data-driven models have been introduced to establish reliable predictions in the rainfall-runoff relationship. The majority of these models are trained using a supervised learning approach, with paired observed (i.e., labeled) samples of climate and streamflow data. However, in practice, the availability of such paired observations is often constrained due to sparse data from streamflow gauges worldwide, which typically covers only a few years/regions. This limited number of paired samples can significantly impede the learning ability of the data-driven model. To fill this gap, we present self-training, a semi-supervised learning approach that imputes the pseudo streamflows for unpaired (i.e., unlabeled) samples to increase the amount of available paired samples. To elaborate, we adopt teacher-student framework. The teacher model is first trained on (limited number of) paired samples and then works as a generator of pseudo streamflow for unpaired samples. The student model is trained on both paired and pseudo streamflow-endowed samples. Notably, our framework introduces an annealing-able loss function for training the student model, designed to compensate for the uncertainty in pseudo streamflow. To validate the effectiveness of the proposed framework, we conducted an extensive set of experiments encompassing diverse spatial and temporal controlled settings, all of which utilized the LSTM network. The experiments are based on basins from the freely available CAMELS dataset. Results indicate that the proposed framework of self-training show significantly enhanced performance compared to the baseline models built in fully-supervised manners with sparse paired observations. Results also show that the framework can serve as a viable alternative to the previously developed fully supervised approaches. Lastly, we address potential avenues for enhancing the model and provide an outline of our future research plans in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
厚朴完成签到 ,获得积分10
12秒前
13秒前
XD824发布了新的文献求助10
20秒前
qdsj2033完成签到,获得积分10
34秒前
馆长举报聪明无颜求助涉嫌违规
37秒前
冷静丸子完成签到 ,获得积分10
44秒前
47秒前
量子星尘发布了新的文献求助10
56秒前
juliar完成签到 ,获得积分10
59秒前
rick3455完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
1分钟前
dreamwalk完成签到 ,获得积分10
1分钟前
六一儿童节完成签到 ,获得积分0
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
小明完成签到 ,获得积分10
1分钟前
1分钟前
XD824发布了新的文献求助10
1分钟前
Guo完成签到,获得积分20
1分钟前
柳叶洋完成签到,获得积分10
1分钟前
tingalan完成签到,获得积分10
2分钟前
小白白完成签到 ,获得积分10
2分钟前
王佳豪完成签到,获得积分10
2分钟前
2分钟前
XD824发布了新的文献求助10
2分钟前
2分钟前
yun发布了新的文献求助10
2分钟前
彦子完成签到 ,获得积分10
2分钟前
Gary完成签到 ,获得积分10
3分钟前
CipherSage应助mervin采纳,获得10
3分钟前
请输入昵称完成签到 ,获得积分10
3分钟前
3分钟前
蝎子莱莱xth完成签到,获得积分10
3分钟前
Amon完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
3分钟前
幽默滑板完成签到,获得积分10
3分钟前
Square完成签到,获得积分10
3分钟前
l老王完成签到 ,获得积分10
3分钟前
秋夜临完成签到,获得积分0
3分钟前
gwbk完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596940
求助须知:如何正确求助?哪些是违规求助? 4008683
关于积分的说明 12409438
捐赠科研通 3687775
什么是DOI,文献DOI怎么找? 2032685
邀请新用户注册赠送积分活动 1065914
科研通“疑难数据库(出版商)”最低求助积分说明 951209