GSL-DTI: Graph structure learning network for Drug-Target interaction prediction

药物发现 构造(python库) 计算机科学 药物靶点 人工智能 机器学习 图形 生物 理论计算机科学 生物信息学 化学 生物化学 程序设计语言
作者
E Zixuan,Guanyu Qiao,Guohua Wang,Yang Li
出处
期刊:Methods [Elsevier]
卷期号:223: 136-145 被引量:6
标识
DOI:10.1016/j.ymeth.2024.01.018
摘要

Motivation: Drug-target interaction prediction is an important area of research to predict whether there is an interaction between a drug molecule and its target protein. It plays a critical role in drug discovery and development by facilitating the identification of potential drug candidates and expediting the overall process. Given the time-consuming, expensive, and high-risk nature of traditional drug discovery methods, the prediction of drug-target interactions has become an indispensable tool. Using machine learning and deep learning to tackle this class of problems has become a mainstream approach, and graph-based models have recently received much attention in this field. However, many current graph-based Drug-Target Interaction (DTI) prediction methods rely on manually defined rules to construct the Drug-Protein Pair (DPP) network during the DPP representation learning process. However, these methods fail to capture the true underlying relationships between drug molecules and target proteins. We propose GSL-DTI, an automatic graph structure learning model used for predicting drug-target interactions (DTIs). Initially, we integrate large-scale heterogeneous networks using a graph convolution network based on meta-paths, effectively learning the representations of drugs and target proteins. Subsequently, we construct drug-protein pairs based on these representations. In contrast to previous studies that construct DPP networks based on manual rules, our method introduces an automatic graph structure learning approach. This approach utilizes a filter gate on the affinity scores of DPPs and relies on the classification loss of downstream tasks to guide the learning of the underlying DPP network structure. Based on the learned DPP network, we transform the prediction of drug-target interactions into a node classification problem. The comprehensive experiments conducted on three public datasets have shown the superiority of GSL-DTI in the tasks of DTI prediction. Additionally, GSL-DTI provides a fresh perspective for advancing research in graph structure learning for DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘总完成签到 ,获得积分10
刚刚
小鱼完成签到 ,获得积分20
3秒前
3秒前
guilin发布了新的文献求助10
3秒前
liyi完成签到,获得积分20
3秒前
Vermouth完成签到,获得积分10
3秒前
王小橘完成签到,获得积分10
4秒前
yck1027完成签到,获得积分10
4秒前
热情迎彤完成签到,获得积分10
5秒前
5秒前
Ttimer完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得50
7秒前
大个应助科研通管家采纳,获得10
7秒前
打打应助科研通管家采纳,获得10
7秒前
玄风应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
qjk发布了新的文献求助10
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
9秒前
NexusExplorer应助WANGJD采纳,获得10
10秒前
我是苯宝宝完成签到,获得积分10
10秒前
11秒前
bkagyin应助黄晃晃采纳,获得10
11秒前
虚幻青曼完成签到,获得积分10
11秒前
清秀凌蝶发布了新的文献求助10
13秒前
tcf发布了新的文献求助10
13秒前
guilin完成签到,获得积分10
13秒前
沉静胜完成签到,获得积分10
14秒前
科研通AI6应助桃子采纳,获得10
14秒前
Fei_U完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618454
求助须知:如何正确求助?哪些是违规求助? 4703358
关于积分的说明 14922268
捐赠科研通 4757546
什么是DOI,文献DOI怎么找? 2550099
邀请新用户注册赠送积分活动 1512920
关于科研通互助平台的介绍 1474299