已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GSL-DTI: Graph structure learning network for Drug-Target interaction prediction

药物发现 构造(python库) 计算机科学 药物靶点 人工智能 机器学习 交互网络 图形 生物 理论计算机科学 生物信息学 化学 生物化学 基因 程序设计语言
作者
E Zixuan,Guanyu Qiao,Guohua Wang,Yang Li
出处
期刊:Methods [Elsevier]
卷期号:223: 136-145 被引量:2
标识
DOI:10.1016/j.ymeth.2024.01.018
摘要

Motivation: Drug-target interaction prediction is an important area of research to predict whether there is an interaction between a drug molecule and its target protein. It plays a critical role in drug discovery and development by facilitating the identification of potential drug candidates and expediting the overall process. Given the time-consuming, expensive, and high-risk nature of traditional drug discovery methods, the prediction of drug-target interactions has become an indispensable tool. Using machine learning and deep learning to tackle this class of problems has become a mainstream approach, and graph-based models have recently received much attention in this field. However, many current graph-based Drug-Target Interaction (DTI) prediction methods rely on manually defined rules to construct the Drug-Protein Pair (DPP) network during the DPP representation learning process. However, these methods fail to capture the true underlying relationships between drug molecules and target proteins. We propose GSL-DTI, an automatic graph structure learning model used for predicting drug-target interactions (DTIs). Initially, we integrate large-scale heterogeneous networks using a graph convolution network based on meta-paths, effectively learning the representations of drugs and target proteins. Subsequently, we construct drug-protein pairs based on these representations. In contrast to previous studies that construct DPP networks based on manual rules, our method introduces an automatic graph structure learning approach. This approach utilizes a filter gate on the affinity scores of DPPs and relies on the classification loss of downstream tasks to guide the learning of the underlying DPP network structure. Based on the learned DPP network, we transform the prediction of drug-target interactions into a node classification problem. The comprehensive experiments conducted on three public datasets have shown the superiority of GSL-DTI in the tasks of DTI prediction. Additionally, GSL-DTI provides a fresh perspective for advancing research in graph structure learning for DTI prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风时因絮发布了新的文献求助10
3秒前
andy发布了新的文献求助10
4秒前
IiIIIIiiIIIIii完成签到,获得积分10
4秒前
wab完成签到,获得积分0
5秒前
7秒前
7秒前
Yang完成签到,获得积分10
8秒前
所所应助Astralius采纳,获得10
8秒前
大力访云完成签到 ,获得积分10
10秒前
11秒前
Kaiser发布了新的文献求助30
11秒前
12秒前
15秒前
QF发布了新的文献求助10
16秒前
17秒前
莹66完成签到 ,获得积分10
17秒前
19秒前
yn给yn的求助进行了留言
19秒前
酷波er应助LD采纳,获得10
19秒前
于冷松发布了新的文献求助10
20秒前
努力羊羊完成签到,获得积分10
20秒前
风时因絮完成签到 ,获得积分10
23秒前
23秒前
领导范儿应助qp采纳,获得10
23秒前
罗啦啦大大滴完成签到,获得积分10
23秒前
狗头发布了新的文献求助20
25秒前
27秒前
挽风月发布了新的文献求助10
31秒前
ymr完成签到,获得积分10
31秒前
完美世界应助起风了采纳,获得10
36秒前
努力羊羊发布了新的文献求助10
39秒前
orixero应助ffq采纳,获得10
39秒前
yangching应助刘斌采纳,获得10
39秒前
ADcal发布了新的文献求助10
40秒前
狗头发布了新的文献求助10
40秒前
爱听歌芝麻完成签到,获得积分10
41秒前
完美丹南完成签到,获得积分10
42秒前
完美丹南发布了新的文献求助10
45秒前
乐乐应助kongchanjie采纳,获得10
46秒前
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154688
求助须知:如何正确求助?哪些是违规求助? 2805501
关于积分的说明 7865044
捐赠科研通 2463690
什么是DOI,文献DOI怎么找? 1311521
科研通“疑难数据库(出版商)”最低求助积分说明 629647
版权声明 601821